用于研究胰腺β细胞系胰岛素分泌的三维多孔仿生细胞外基质的力学和功能特征。

In vitro models Pub Date : 2024-10-25 eCollection Date: 2024-12-01 DOI:10.1007/s44164-024-00078-z
Leonid Pliner, Nathan Laneret, Meryl Roudaut, Alejandra Mogrovejo-Valdivia, Elodie Vandenhaute, Nathalie Maubon, Robert-Alain Toillon, Youness Karrout, Anthony Treizebre, Jean-Sébastien Annicotte
{"title":"用于研究胰腺β细胞系胰岛素分泌的三维多孔仿生细胞外基质的力学和功能特征。","authors":"Leonid Pliner, Nathan Laneret, Meryl Roudaut, Alejandra Mogrovejo-Valdivia, Elodie Vandenhaute, Nathalie Maubon, Robert-Alain Toillon, Youness Karrout, Anthony Treizebre, Jean-Sébastien Annicotte","doi":"10.1007/s44164-024-00078-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells. Pancreatic β-cells have been previously shown to be responsive to the surrounding mechanical stress, impacting their insulin-secreting function.</p><p><strong>Purpose: </strong>We aimed to derive a physiologically relevant in vitro model of pancreatic tissue by using an innovative synthesised porous ECM that mimics the native tissue microenvironment and mechanical properties.</p><p><strong>Methods: </strong>Here we performed mechanical, physico-chemical and functional characterisation of a synthetic hydrogel ECM, composed of hyaluronic acid cross-linked with collagen types I and VI and modified with fibronectin. The hydrogel was used as a 3D cell culture scaffold for the MIN6 insulinoma cell line. Cell proliferation, viability, gene expression, and insulin secretion in response to glucose stimulus were assessed and contrasted with classic monolayer culture.</p><p><strong>Results: </strong>The biomaterial exhibited a shear modulus of 815.37 kPa and a distinctive viscoelastic response. MIN6 cells showed a higher proliferation and viability rates and maintained insulin secretion in response to glucose stimulus and β-cell identity gene expression when cultured in the 3D hydrogel compared to monolayer culture.</p><p><strong>Conclusion: </strong>Our study demonstrated the potential of this biomimetic hydrogel scaffold as an innovative matrix enabling better in vitro models to study disease physiopathology.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-024-00078-z.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"3 4-6","pages":"205-218"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.\",\"authors\":\"Leonid Pliner, Nathan Laneret, Meryl Roudaut, Alejandra Mogrovejo-Valdivia, Elodie Vandenhaute, Nathalie Maubon, Robert-Alain Toillon, Youness Karrout, Anthony Treizebre, Jean-Sébastien Annicotte\",\"doi\":\"10.1007/s44164-024-00078-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells. Pancreatic β-cells have been previously shown to be responsive to the surrounding mechanical stress, impacting their insulin-secreting function.</p><p><strong>Purpose: </strong>We aimed to derive a physiologically relevant in vitro model of pancreatic tissue by using an innovative synthesised porous ECM that mimics the native tissue microenvironment and mechanical properties.</p><p><strong>Methods: </strong>Here we performed mechanical, physico-chemical and functional characterisation of a synthetic hydrogel ECM, composed of hyaluronic acid cross-linked with collagen types I and VI and modified with fibronectin. The hydrogel was used as a 3D cell culture scaffold for the MIN6 insulinoma cell line. Cell proliferation, viability, gene expression, and insulin secretion in response to glucose stimulus were assessed and contrasted with classic monolayer culture.</p><p><strong>Results: </strong>The biomaterial exhibited a shear modulus of 815.37 kPa and a distinctive viscoelastic response. MIN6 cells showed a higher proliferation and viability rates and maintained insulin secretion in response to glucose stimulus and β-cell identity gene expression when cultured in the 3D hydrogel compared to monolayer culture.</p><p><strong>Conclusion: </strong>Our study demonstrated the potential of this biomimetic hydrogel scaffold as an innovative matrix enabling better in vitro models to study disease physiopathology.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-024-00078-z.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"3 4-6\",\"pages\":\"205-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-024-00078-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-024-00078-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:细胞外基质(Extracellular matrix, ECM)是在许多生物体组织细胞周围发现的一种三维(3D)结构。它主要由纤维蛋白(如胶原蛋白和弹性蛋白)和粘附糖蛋白(如纤维连接蛋白和层粘连蛋白)以及蛋白聚糖(如透明质酸)组成。ECM通过向细胞提供生化和生物力学线索,具有多种基本功能,包括组织结构支持、细胞通讯调节、粘附、迁移和分化。胰腺β细胞先前已被证明对周围的机械应力有反应,影响其胰岛素分泌功能。目的:我们的目的是通过使用一种创新的合成多孔ECM来模拟天然组织微环境和机械特性,从而获得一个与胰腺组织生理相关的体外模型。方法:我们对一种由透明质酸与I型和VI型胶原交联并经纤维连接蛋白修饰的合成水凝胶ECM进行了机械、物理化学和功能表征。该水凝胶被用作MIN6胰岛素瘤细胞系的3D细胞培养支架。对葡萄糖刺激下的细胞增殖、活力、基因表达和胰岛素分泌进行了评估,并与经典单层培养进行了对比。结果:该生物材料的剪切模量为815.37 kPa,具有明显的粘弹性响应。与单层培养相比,在3D水凝胶中培养的MIN6细胞表现出更高的增殖率和存活率,并在葡萄糖刺激下维持胰岛素分泌和β细胞身份基因表达。结论:我们的研究证明了这种仿生水凝胶支架作为一种创新基质的潜力,可以更好地在体外模型中研究疾病的生理病理。补充信息:在线版本包含补充资料,提供地址为10.1007/s44164-024-00078-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells. Pancreatic β-cells have been previously shown to be responsive to the surrounding mechanical stress, impacting their insulin-secreting function.

Purpose: We aimed to derive a physiologically relevant in vitro model of pancreatic tissue by using an innovative synthesised porous ECM that mimics the native tissue microenvironment and mechanical properties.

Methods: Here we performed mechanical, physico-chemical and functional characterisation of a synthetic hydrogel ECM, composed of hyaluronic acid cross-linked with collagen types I and VI and modified with fibronectin. The hydrogel was used as a 3D cell culture scaffold for the MIN6 insulinoma cell line. Cell proliferation, viability, gene expression, and insulin secretion in response to glucose stimulus were assessed and contrasted with classic monolayer culture.

Results: The biomaterial exhibited a shear modulus of 815.37 kPa and a distinctive viscoelastic response. MIN6 cells showed a higher proliferation and viability rates and maintained insulin secretion in response to glucose stimulus and β-cell identity gene expression when cultured in the 3D hydrogel compared to monolayer culture.

Conclusion: Our study demonstrated the potential of this biomimetic hydrogel scaffold as an innovative matrix enabling better in vitro models to study disease physiopathology.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-024-00078-z.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信