基于成分的方法创建药物列表,并支持颗粒数据分割。

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Daniel Mendoza, Isca Amanda, Lin Zhao, Darwyn Chern, Maria Adela Grando
{"title":"基于成分的方法创建药物列表,并支持颗粒数据分割。","authors":"Daniel Mendoza, Isca Amanda, Lin Zhao, Darwyn Chern, Maria Adela Grando","doi":"10.1177/14604582251316781","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> Show the generalizability of an ingredient-based method to automatically create an up-to-date, error-free, complete list of medication codes (e.g., opioid medications with at least one opioid ingredient) from an ingredient list (e.g., opioid ingredients). The method, previously evaluated with the RxNorm terminology, was reused and applied in the National Drug Code (NDC) context to create opioid and antidepressant medication lists. <b>Methods:</b> The resulting medication lists were validated through automatic comparisons with curated medication lists (the CDC opioid medication code set and the HEDIS antidepressant medication code set), automatic comparisons with active medication lists (Federal Drug Administration (FDA) databases and RxNorm), and manual physicians' review. <b>Results:</b> The proposed ingredient-based method was validated with two clinical terminologies (RxNorm and NDC) and two use cases (opioid and antidepressant medication code sets), demonstrating generalizability, reusability, and high accuracy. <b>Conclusion:</b> Methodologies for creating lists of sensitive codes are essential to supporting patients' need to restrict access to potentially stigmatizing information. In contrast with data-driven, less accurate, and unexplainable methods to create clinical lists, our study innovated by proposing algorithms to automatically discover correct, complete, up-to-date, and ingredient-based medication lists.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 1","pages":"14604582251316781"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ingredient-based method to create medication lists and support granular data segmentation.\",\"authors\":\"Daniel Mendoza, Isca Amanda, Lin Zhao, Darwyn Chern, Maria Adela Grando\",\"doi\":\"10.1177/14604582251316781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives:</b> Show the generalizability of an ingredient-based method to automatically create an up-to-date, error-free, complete list of medication codes (e.g., opioid medications with at least one opioid ingredient) from an ingredient list (e.g., opioid ingredients). The method, previously evaluated with the RxNorm terminology, was reused and applied in the National Drug Code (NDC) context to create opioid and antidepressant medication lists. <b>Methods:</b> The resulting medication lists were validated through automatic comparisons with curated medication lists (the CDC opioid medication code set and the HEDIS antidepressant medication code set), automatic comparisons with active medication lists (Federal Drug Administration (FDA) databases and RxNorm), and manual physicians' review. <b>Results:</b> The proposed ingredient-based method was validated with two clinical terminologies (RxNorm and NDC) and two use cases (opioid and antidepressant medication code sets), demonstrating generalizability, reusability, and high accuracy. <b>Conclusion:</b> Methodologies for creating lists of sensitive codes are essential to supporting patients' need to restrict access to potentially stigmatizing information. In contrast with data-driven, less accurate, and unexplainable methods to create clinical lists, our study innovated by proposing algorithms to automatically discover correct, complete, up-to-date, and ingredient-based medication lists.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"31 1\",\"pages\":\"14604582251316781\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582251316781\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582251316781","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:展示基于成分的方法从成分表(如阿片类成分)中自动创建最新、无错误、完整的药物代码清单(例如,至少含有一种阿片类成分的阿片类药物)的普遍性。该方法先前使用RxNorm术语进行评估,在国家药品法典(NDC)的背景下重新使用并应用于创建阿片类药物和抗抑郁药物清单。方法:通过与精选药物清单(CDC阿片类药物代码集和HEDIS抗抑郁药物代码集)、与现行药物清单(FDA数据库和RxNorm)的自动比较,以及医师手工审核,对所得药物清单进行验证。结果:提出的基于成分的方法通过两个临床术语(RxNorm和NDC)和两个用例(阿片类药物和抗抑郁药物代码集)进行了验证,证明了该方法的通用性、可重用性和高准确性。结论:创建敏感代码列表的方法对于支持患者限制获取潜在污名化信息的需求至关重要。与数据驱动的、不太准确的、无法解释的创建临床清单的方法相比,我们的研究创新地提出了自动发现正确、完整、最新和基于成分的药物清单的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ingredient-based method to create medication lists and support granular data segmentation.

Objectives: Show the generalizability of an ingredient-based method to automatically create an up-to-date, error-free, complete list of medication codes (e.g., opioid medications with at least one opioid ingredient) from an ingredient list (e.g., opioid ingredients). The method, previously evaluated with the RxNorm terminology, was reused and applied in the National Drug Code (NDC) context to create opioid and antidepressant medication lists. Methods: The resulting medication lists were validated through automatic comparisons with curated medication lists (the CDC opioid medication code set and the HEDIS antidepressant medication code set), automatic comparisons with active medication lists (Federal Drug Administration (FDA) databases and RxNorm), and manual physicians' review. Results: The proposed ingredient-based method was validated with two clinical terminologies (RxNorm and NDC) and two use cases (opioid and antidepressant medication code sets), demonstrating generalizability, reusability, and high accuracy. Conclusion: Methodologies for creating lists of sensitive codes are essential to supporting patients' need to restrict access to potentially stigmatizing information. In contrast with data-driven, less accurate, and unexplainable methods to create clinical lists, our study innovated by proposing algorithms to automatically discover correct, complete, up-to-date, and ingredient-based medication lists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信