Julia C Fitzgerald, Ying Sun, Frederek Reinecke, Elisabeth Bauer, Olga Garaschuk, Philipp J Kahle, Friederike Pfeiffer
{"title":"小鼠黑质下少突胶质前体细胞与多巴胺能神经元的相互作用","authors":"Julia C Fitzgerald, Ying Sun, Frederek Reinecke, Elisabeth Bauer, Olga Garaschuk, Philipp J Kahle, Friederike Pfeiffer","doi":"10.1111/jnc.16298","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia. We sought to investigate the distribution of OPCs with regard to the myelination state in the mouse substantia nigra (SN) by high-resolution imaging to provide a morphological assessment of OPC-dopaminergic neuron interactions and quantification of cell numbers across different age groups. OPCs are evenly distributed in the midbrain throughout the lifespan and they physically interact with both the soma and axons of dopaminergic neurons. The presence of OPCs and their interaction with dopaminergic neurons does not correlate with the distribution of myelin. Myelination is sparse in the SNpc, including dopaminergic fibers originating from the SNpc and projecting through the substantia nigra pars reticulata (SNpr). We report that OPCs and dopaminergic neurons exist in a 1:1 ratio in the SNpc, with OPCs accounting for 15%-16% of all cells in the region across all age groups. This description of OPC-dopaminergic neuron interaction in the midbrain provides a first look at their longitudinal distribution in mice, suggesting additional functions of OPCs beyond their differentiation into myelinating oligodendrocytes.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":"e16298"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions of Oligodendrocyte Precursor Cells and Dopaminergic Neurons in the Mouse Substantia Nigra.\",\"authors\":\"Julia C Fitzgerald, Ying Sun, Frederek Reinecke, Elisabeth Bauer, Olga Garaschuk, Philipp J Kahle, Friederike Pfeiffer\",\"doi\":\"10.1111/jnc.16298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia. We sought to investigate the distribution of OPCs with regard to the myelination state in the mouse substantia nigra (SN) by high-resolution imaging to provide a morphological assessment of OPC-dopaminergic neuron interactions and quantification of cell numbers across different age groups. OPCs are evenly distributed in the midbrain throughout the lifespan and they physically interact with both the soma and axons of dopaminergic neurons. The presence of OPCs and their interaction with dopaminergic neurons does not correlate with the distribution of myelin. Myelination is sparse in the SNpc, including dopaminergic fibers originating from the SNpc and projecting through the substantia nigra pars reticulata (SNpr). We report that OPCs and dopaminergic neurons exist in a 1:1 ratio in the SNpc, with OPCs accounting for 15%-16% of all cells in the region across all age groups. This description of OPC-dopaminergic neuron interaction in the midbrain provides a first look at their longitudinal distribution in mice, suggesting additional functions of OPCs beyond their differentiation into myelinating oligodendrocytes.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 1\",\"pages\":\"e16298\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16298\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16298","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interactions of Oligodendrocyte Precursor Cells and Dopaminergic Neurons in the Mouse Substantia Nigra.
Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia. We sought to investigate the distribution of OPCs with regard to the myelination state in the mouse substantia nigra (SN) by high-resolution imaging to provide a morphological assessment of OPC-dopaminergic neuron interactions and quantification of cell numbers across different age groups. OPCs are evenly distributed in the midbrain throughout the lifespan and they physically interact with both the soma and axons of dopaminergic neurons. The presence of OPCs and their interaction with dopaminergic neurons does not correlate with the distribution of myelin. Myelination is sparse in the SNpc, including dopaminergic fibers originating from the SNpc and projecting through the substantia nigra pars reticulata (SNpr). We report that OPCs and dopaminergic neurons exist in a 1:1 ratio in the SNpc, with OPCs accounting for 15%-16% of all cells in the region across all age groups. This description of OPC-dopaminergic neuron interaction in the midbrain provides a first look at their longitudinal distribution in mice, suggesting additional functions of OPCs beyond their differentiation into myelinating oligodendrocytes.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.