可积分和不可积分分数离散修正 Korteweg-de Vries 层次的分析和数值研究。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0245319
Qin-Ling Liu, Rui Guo, Ya-Hui Huang, Xin Li
{"title":"可积分和不可积分分数离散修正 Korteweg-de Vries 层次的分析和数值研究。","authors":"Qin-Ling Liu, Rui Guo, Ya-Hui Huang, Xin Li","doi":"10.1063/5.0245319","DOIUrl":null,"url":null,"abstract":"<p><p>Under investigation in this paper is the integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies. The linear dispersion relations, completeness relations, inverse scattering transform, and fractional soliton solutions of the integrable fractional discrete modified Korteweg-de Vries hierarchy will be explored. The inverse scattering problem will be solved accurately by constructing Gel'fand-Levitan-Marchenko equations and Riemann-Hilbert problem. The peak velocity of fractional soliton solutions will be analyzed. Numerical solutions of the non-integrable fractional averaged discrete modified Korteweg-de Vries equation, which has a simpler form than the integrable one, will be obtained by a split-step Fourier scheme.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and numerical studies for integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies.\",\"authors\":\"Qin-Ling Liu, Rui Guo, Ya-Hui Huang, Xin Li\",\"doi\":\"10.1063/5.0245319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under investigation in this paper is the integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies. The linear dispersion relations, completeness relations, inverse scattering transform, and fractional soliton solutions of the integrable fractional discrete modified Korteweg-de Vries hierarchy will be explored. The inverse scattering problem will be solved accurately by constructing Gel'fand-Levitan-Marchenko equations and Riemann-Hilbert problem. The peak velocity of fractional soliton solutions will be analyzed. Numerical solutions of the non-integrable fractional averaged discrete modified Korteweg-de Vries equation, which has a simpler form than the integrable one, will be obtained by a split-step Fourier scheme.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245319\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245319","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical and numerical studies for integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies.

Under investigation in this paper is the integrable and non-integrable fractional discrete modified Korteweg-de Vries hierarchies. The linear dispersion relations, completeness relations, inverse scattering transform, and fractional soliton solutions of the integrable fractional discrete modified Korteweg-de Vries hierarchy will be explored. The inverse scattering problem will be solved accurately by constructing Gel'fand-Levitan-Marchenko equations and Riemann-Hilbert problem. The peak velocity of fractional soliton solutions will be analyzed. Numerical solutions of the non-integrable fractional averaged discrete modified Korteweg-de Vries equation, which has a simpler form than the integrable one, will be obtained by a split-step Fourier scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信