{"title":"基于模型的中国成人阻塞性肥厚性心肌病患者马伐卡坦治疗建议。","authors":"Xiaojie Wu, Shilpa Puli, Nanye Chen, Zhuang Tian, Peiwen Hsu, Jing Sun, Cheng Lyu, Samira Merali, Jing Zhang","doi":"10.1002/psp4.13312","DOIUrl":null,"url":null,"abstract":"<p>Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information. Mavacamten is metabolized primarily by cytochrome P450 2C19 (CYP2C19) (74%), a highly polymorphic enzyme. China has a higher prevalence of poor CYP2C19 metabolizer phenotype compared with the global population; therefore, a previous model was adapted to include Chinese patients with obstructive HCM to identify the optimal dosing regimen for this population. Data from a phase I (healthy Chinese volunteers) and a phase III (EXPLORER-CN, NCT05174416; Chinese patients with obstructive HCM) trial of mavacamten were added to the previous PPK and E-R models, and the observed VLVOTg and LVEF from EXPLORER-CN were successfully simulated. Next, five echocardiography-guided titration regimens (plus the EXPLORER-CN regimen) using representative or equal CYP2C19 phenotypes were simulated. The final simulated regimen recommended with an optimal benefit/risk profile across CYP2C19 phenotypes included: down-titration at Week 4 (if VLVOTg < 20 mmHg), restart at Week 12, and up-titration at Week 12 (for VLVOTg ≥ 30 mmHg and LVEF ≥ 55%), and every 12 weeks thereafter. This supports the previously recommended regimen for Chinese patients with obstructive HCM, now approved by the National Medicinal Products Administration.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"14 4","pages":"751-758"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13312","citationCount":"0","resultStr":"{\"title\":\"Model-Informed Recommendation of Mavacamten Posology for Chinese Adults With Obstructive Hypertrophic Cardiomyopathy\",\"authors\":\"Xiaojie Wu, Shilpa Puli, Nanye Chen, Zhuang Tian, Peiwen Hsu, Jing Sun, Cheng Lyu, Samira Merali, Jing Zhang\",\"doi\":\"10.1002/psp4.13312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information. Mavacamten is metabolized primarily by cytochrome P450 2C19 (CYP2C19) (74%), a highly polymorphic enzyme. China has a higher prevalence of poor CYP2C19 metabolizer phenotype compared with the global population; therefore, a previous model was adapted to include Chinese patients with obstructive HCM to identify the optimal dosing regimen for this population. Data from a phase I (healthy Chinese volunteers) and a phase III (EXPLORER-CN, NCT05174416; Chinese patients with obstructive HCM) trial of mavacamten were added to the previous PPK and E-R models, and the observed VLVOTg and LVEF from EXPLORER-CN were successfully simulated. Next, five echocardiography-guided titration regimens (plus the EXPLORER-CN regimen) using representative or equal CYP2C19 phenotypes were simulated. The final simulated regimen recommended with an optimal benefit/risk profile across CYP2C19 phenotypes included: down-titration at Week 4 (if VLVOTg < 20 mmHg), restart at Week 12, and up-titration at Week 12 (for VLVOTg ≥ 30 mmHg and LVEF ≥ 55%), and every 12 weeks thereafter. This supports the previously recommended regimen for Chinese patients with obstructive HCM, now approved by the National Medicinal Products Administration.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\"14 4\",\"pages\":\"751-758\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13312\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13312\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Model-Informed Recommendation of Mavacamten Posology for Chinese Adults With Obstructive Hypertrophic Cardiomyopathy
Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information. Mavacamten is metabolized primarily by cytochrome P450 2C19 (CYP2C19) (74%), a highly polymorphic enzyme. China has a higher prevalence of poor CYP2C19 metabolizer phenotype compared with the global population; therefore, a previous model was adapted to include Chinese patients with obstructive HCM to identify the optimal dosing regimen for this population. Data from a phase I (healthy Chinese volunteers) and a phase III (EXPLORER-CN, NCT05174416; Chinese patients with obstructive HCM) trial of mavacamten were added to the previous PPK and E-R models, and the observed VLVOTg and LVEF from EXPLORER-CN were successfully simulated. Next, five echocardiography-guided titration regimens (plus the EXPLORER-CN regimen) using representative or equal CYP2C19 phenotypes were simulated. The final simulated regimen recommended with an optimal benefit/risk profile across CYP2C19 phenotypes included: down-titration at Week 4 (if VLVOTg < 20 mmHg), restart at Week 12, and up-titration at Week 12 (for VLVOTg ≥ 30 mmHg and LVEF ≥ 55%), and every 12 weeks thereafter. This supports the previously recommended regimen for Chinese patients with obstructive HCM, now approved by the National Medicinal Products Administration.