{"title":"Ion-Ion Structural Correlation and Dynamics of Water in Aqueous NaCl Solutions with a Wide Range of Concentrations.","authors":"Khushika, Pritam Kumar Jana","doi":"10.1021/acs.jpcb.4c05252","DOIUrl":null,"url":null,"abstract":"<p><p>The behavior of water in concentrated ionic solutions, including supersaturated conditions, is crucial for numerous material and energy conversion processes and fundamental research. All electrolytes whether they \"structure-make\" or \"structure-break\" the water structure lead to slower water motion. This study investigates the structure and dynamics of aqueous NaCl solutions across a wide range of concentrations. On the structural side, the primary focus is on ion-ion correlations. In terms of dynamics, we demonstrate that the slowing down of water dynamics continues even beyond the saturated state. We identify three distinct types of dynamics at large concentrations: ballistic, trapped, and diffusive. The van Hove correlation function exhibits no signs of relaxation within a time interval where particle motion is effectively halted. The system displays dynamical heterogeneities, confirmed by evaluating non-Gaussian parameters for the self-part of the van Hove function and identifying the mobile particles. These particles form clusters, with the largest sizes occurring when the non-Gaussian parameters are at their maximum. Additionally, we discuss the relaxation times associated with these systems using the incoherent intermediate scattering function and establish a connection with the mode-coupling theory.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05252","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ion-Ion Structural Correlation and Dynamics of Water in Aqueous NaCl Solutions with a Wide Range of Concentrations.
The behavior of water in concentrated ionic solutions, including supersaturated conditions, is crucial for numerous material and energy conversion processes and fundamental research. All electrolytes whether they "structure-make" or "structure-break" the water structure lead to slower water motion. This study investigates the structure and dynamics of aqueous NaCl solutions across a wide range of concentrations. On the structural side, the primary focus is on ion-ion correlations. In terms of dynamics, we demonstrate that the slowing down of water dynamics continues even beyond the saturated state. We identify three distinct types of dynamics at large concentrations: ballistic, trapped, and diffusive. The van Hove correlation function exhibits no signs of relaxation within a time interval where particle motion is effectively halted. The system displays dynamical heterogeneities, confirmed by evaluating non-Gaussian parameters for the self-part of the van Hove function and identifying the mobile particles. These particles form clusters, with the largest sizes occurring when the non-Gaussian parameters are at their maximum. Additionally, we discuss the relaxation times associated with these systems using the incoherent intermediate scattering function and establish a connection with the mode-coupling theory.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.