化学信息深度学习用于可解释的自由基反应预测。

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Mohammadamin Tavakoli, Yin Ting T Chiu, Ann Marie Carlton, David Van Vranken, Pierre Baldi
{"title":"化学信息深度学习用于可解释的自由基反应预测。","authors":"Mohammadamin Tavakoli, Yin Ting T Chiu, Ann Marie Carlton, David Van Vranken, Pierre Baldi","doi":"10.1021/acs.jcim.4c01901","DOIUrl":null,"url":null,"abstract":"<p><p>Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability. Our models are trained and evaluated using the RMechDB database of radical reaction steps. Our model predicts the correct orbital interaction and products for 96% of the test reactions in RMechDB. By chaining these predictions, we perform a pathway search capable of identifying all intermediates and byproducts of a radical reaction. We test the pathway search on two classes of problems in atmospheric and polymerization chemistry. RMechRP is publicly available online at https://deeprxn.ics.uci.edu/rmechrp/.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"1228-1242"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemically Informed Deep Learning for Interpretable Radical Reaction Prediction.\",\"authors\":\"Mohammadamin Tavakoli, Yin Ting T Chiu, Ann Marie Carlton, David Van Vranken, Pierre Baldi\",\"doi\":\"10.1021/acs.jcim.4c01901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability. Our models are trained and evaluated using the RMechDB database of radical reaction steps. Our model predicts the correct orbital interaction and products for 96% of the test reactions in RMechDB. By chaining these predictions, we perform a pathway search capable of identifying all intermediates and byproducts of a radical reaction. We test the pathway search on two classes of problems in atmospheric and polymerization chemistry. RMechRP is publicly available online at https://deeprxn.ics.uci.edu/rmechrp/.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"1228-1242\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01901\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01901","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

有机自由基反应在化学的许多领域都是至关重要的,包括合成化学、生物化学和大气化学。我们开发了一个基于分子轨道相互作用的预测框架,这种相互作用在机械水平的自由基反应中起作用。根据我们的化学感知模型,所有的预测都具有不同程度的可解释性。我们的模型使用RMechDB自由基反应步骤数据库进行训练和评估。我们的模型预测了RMechDB中96%的测试反应的轨道相互作用和产物。通过链接这些预测,我们执行的途径搜索能够识别所有中间体和自由基反应的副产物。我们在大气化学和聚合化学的两类问题上测试了路径搜索。RMechRP可在https://deeprxn.ics.uci.edu/rmechrp/上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically Informed Deep Learning for Interpretable Radical Reaction Prediction.

Organic radical reactions are crucial in many areas of chemistry, including synthetic, biological, and atmospheric chemistry. We develop a predictive framework based on the interaction of molecular orbitals that operates on mechanistic-level radical reactions. Given our chemistry-aware model, all predictions are provided with different levels of interpretability. Our models are trained and evaluated using the RMechDB database of radical reaction steps. Our model predicts the correct orbital interaction and products for 96% of the test reactions in RMechDB. By chaining these predictions, we perform a pathway search capable of identifying all intermediates and byproducts of a radical reaction. We test the pathway search on two classes of problems in atmospheric and polymerization chemistry. RMechRP is publicly available online at https://deeprxn.ics.uci.edu/rmechrp/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信