电荷密度波材料 SrAl4 中的压力驱动结构转变

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Shihu Zhang, Yi-Chi Li, Yang Chen, Yonghui Zhou, Shuyang Wang, Ying Zhou, Min Zhang, Chao An, Yong Fang, Jian Zhou, Zhaorong Yang
{"title":"电荷密度波材料 SrAl4 中的压力驱动结构转变","authors":"Shihu Zhang, Yi-Chi Li, Yang Chen, Yonghui Zhou, Shuyang Wang, Ying Zhou, Min Zhang, Chao An, Yong Fang, Jian Zhou, Zhaorong Yang","doi":"10.1021/acs.jpcc.4c08594","DOIUrl":null,"url":null,"abstract":"SrAl<sub>4</sub>, which possesses a BaAl<sub>4</sub>-type tetragonal structure (<i>I</i>4/<i>mmm</i>, No. 139), exhibits both a charge density wave (CDW) order and a topological semimetal state at ambient pressure. Here, the electronic and structural properties of SrAl<sub>4</sub> were systematically investigated with pressure up to 49.4 GPa through electrical transport, X-ray diffraction (XRD), and Raman scattering measurements, as well as theoretical calculations. With increasing pressure, the <i>T</i><sub>CDW</sub> is monotonically decreased, and the CDW state is eventually suppressed to zero temperature at ∼10 GPa based on the linear extrapolation. At ambient pressure, three Raman vibrational modes are identified, which are assigned to <i>B</i><sub>1<i>g</i></sub> (230.9 cm<sup>–1</sup>), <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.539em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.232em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.181em, 1001.23em, 2.769em, -999.997em); top: -2.2em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.232em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.77em, 4.152em, -999.997em); top: -3.993em; left: 0em;\"><span><span style=\"font-family: MathJax_Math-italic;\">E<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.054em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.384em, 1000.41em, 4.152em, -999.997em); top: -4.403em; left: 0.822em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.537em, 1000.41em, 4.306em, -999.997em); top: -3.737em; left: 0.72em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Math-italic;\">g<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.559em; border-left: 0px solid; width: 0px; height: 1.691em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></script> (302.7 cm<sup>–1</sup>), and <i>A</i><sub>1<i>g</i></sub> (357.4 cm<sup>–1</sup>), respectively. Upon compression to <i>P</i><sub>C</sub> = 19.0 GPa, the original Raman modes all disappear, and simultaneously, four new peaks emerge, which indicate the occurrence of a structural transition. Combined with XRD and theoretical calculations, the <i>C</i>2/<i>m</i> phase is believed to be the most plausible crystal structure of SrAl<sub>4</sub> above <i>P</i><sub>C</sub>. In addition, the residual resistance ratio as well as magnetoresistance shows abrupt changes across <i>P</i><sub>C</sub>, which further manifest the structural transition (<i>I</i>4/<i>mmm</i> → <i>C</i>2/<i>m</i>) of SrAl<sub>4</sub> under high pressure.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"39 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-Driven Structural Transition in the Charge Density Wave Material SrAl4\",\"authors\":\"Shihu Zhang, Yi-Chi Li, Yang Chen, Yonghui Zhou, Shuyang Wang, Ying Zhou, Min Zhang, Chao An, Yong Fang, Jian Zhou, Zhaorong Yang\",\"doi\":\"10.1021/acs.jpcc.4c08594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SrAl<sub>4</sub>, which possesses a BaAl<sub>4</sub>-type tetragonal structure (<i>I</i>4/<i>mmm</i>, No. 139), exhibits both a charge density wave (CDW) order and a topological semimetal state at ambient pressure. Here, the electronic and structural properties of SrAl<sub>4</sub> were systematically investigated with pressure up to 49.4 GPa through electrical transport, X-ray diffraction (XRD), and Raman scattering measurements, as well as theoretical calculations. With increasing pressure, the <i>T</i><sub>CDW</sub> is monotonically decreased, and the CDW state is eventually suppressed to zero temperature at ∼10 GPa based on the linear extrapolation. At ambient pressure, three Raman vibrational modes are identified, which are assigned to <i>B</i><sub>1<i>g</i></sub> (230.9 cm<sup>–1</sup>), <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.539em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.232em; height: 0px; font-size: 122%;\\\"><span style=\\\"position: absolute; clip: rect(1.181em, 1001.23em, 2.769em, -999.997em); top: -2.2em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.232em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.179em, 1000.77em, 4.152em, -999.997em); top: -3.993em; left: 0em;\\\"><span><span style=\\\"font-family: MathJax_Math-italic;\\\">E<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.054em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.384em, 1000.41em, 4.152em, -999.997em); top: -4.403em; left: 0.822em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">2</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.537em, 1000.41em, 4.306em, -999.997em); top: -3.737em; left: 0.72em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Math-italic;\\\">g<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.205em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.559em; border-left: 0px solid; width: 0px; height: 1.691em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msubsup><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></script> (302.7 cm<sup>–1</sup>), and <i>A</i><sub>1<i>g</i></sub> (357.4 cm<sup>–1</sup>), respectively. Upon compression to <i>P</i><sub>C</sub> = 19.0 GPa, the original Raman modes all disappear, and simultaneously, four new peaks emerge, which indicate the occurrence of a structural transition. Combined with XRD and theoretical calculations, the <i>C</i>2/<i>m</i> phase is believed to be the most plausible crystal structure of SrAl<sub>4</sub> above <i>P</i><sub>C</sub>. In addition, the residual resistance ratio as well as magnetoresistance shows abrupt changes across <i>P</i><sub>C</sub>, which further manifest the structural transition (<i>I</i>4/<i>mmm</i> → <i>C</i>2/<i>m</i>) of SrAl<sub>4</sub> under high pressure.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c08594\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08594","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pressure-Driven Structural Transition in the Charge Density Wave Material SrAl4

Pressure-Driven Structural Transition in the Charge Density Wave Material SrAl4
SrAl4, which possesses a BaAl4-type tetragonal structure (I4/mmm, No. 139), exhibits both a charge density wave (CDW) order and a topological semimetal state at ambient pressure. Here, the electronic and structural properties of SrAl4 were systematically investigated with pressure up to 49.4 GPa through electrical transport, X-ray diffraction (XRD), and Raman scattering measurements, as well as theoretical calculations. With increasing pressure, the TCDW is monotonically decreased, and the CDW state is eventually suppressed to zero temperature at ∼10 GPa based on the linear extrapolation. At ambient pressure, three Raman vibrational modes are identified, which are assigned to B1g (230.9 cm–1), Eg2 (302.7 cm–1), and A1g (357.4 cm–1), respectively. Upon compression to PC = 19.0 GPa, the original Raman modes all disappear, and simultaneously, four new peaks emerge, which indicate the occurrence of a structural transition. Combined with XRD and theoretical calculations, the C2/m phase is believed to be the most plausible crystal structure of SrAl4 above PC. In addition, the residual resistance ratio as well as magnetoresistance shows abrupt changes across PC, which further manifest the structural transition (I4/mmmC2/m) of SrAl4 under high pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信