从综合征译码问题到正则译码问题的多项式化简

IF 1.2 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pavol Zajac
{"title":"从综合征译码问题到正则译码问题的多项式化简","authors":"Pavol Zajac","doi":"10.1007/s10623-025-01567-2","DOIUrl":null,"url":null,"abstract":"<p>The regular decoding problem asks for (the existence of) regular solutions to a syndrome decoding problem (SDP). This problem has increased applications in post-quantum cryptography and cryptanalysis. Recently, Esser and Santini explored in depth the connection between the regular (RSD) and classical syndrome decoding problems. They have observed that while RSD to SDP reductions are known (in any parametric regime), a similar generic reduction from SDP to RSD is not known. In our contribution, we examine two different generic polynomial reductions from a syndrome decoding problem to a regular decoding problem instance. The first reduction is based on constructing a special parity check matrix that encodes weight counter progression inside the parity check matrix, which is then the input of the regular decoding oracle. The target regular decoding problem has a significantly longer code length, that depends linearly on the weight parameter of the original SDP. The second reduction is based on translating the SDP to a non-linear system of equations in the Multiple Right-Hand Sides form, and then applying RSD oracle to solve this system. The second reduction has better code length. The ratio between RSD and SDP code length of the second reduction can be bounded by a constant (less than 8).</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"114 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial reduction from syndrome decoding problem to regular decoding problem\",\"authors\":\"Pavol Zajac\",\"doi\":\"10.1007/s10623-025-01567-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regular decoding problem asks for (the existence of) regular solutions to a syndrome decoding problem (SDP). This problem has increased applications in post-quantum cryptography and cryptanalysis. Recently, Esser and Santini explored in depth the connection between the regular (RSD) and classical syndrome decoding problems. They have observed that while RSD to SDP reductions are known (in any parametric regime), a similar generic reduction from SDP to RSD is not known. In our contribution, we examine two different generic polynomial reductions from a syndrome decoding problem to a regular decoding problem instance. The first reduction is based on constructing a special parity check matrix that encodes weight counter progression inside the parity check matrix, which is then the input of the regular decoding oracle. The target regular decoding problem has a significantly longer code length, that depends linearly on the weight parameter of the original SDP. The second reduction is based on translating the SDP to a non-linear system of equations in the Multiple Right-Hand Sides form, and then applying RSD oracle to solve this system. The second reduction has better code length. The ratio between RSD and SDP code length of the second reduction can be bounded by a constant (less than 8).</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-025-01567-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01567-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

正则解码问题要求一个综合征解码问题(SDP)的正则解(存在)。这个问题在后量子密码学和密码分析中得到了越来越多的应用。最近,Esser和Santini深入探讨了正则(RSD)和经典综合征解码问题之间的联系。他们观察到,虽然RSD到SDP的减少是已知的(在任何参数制度下),但从SDP到RSD的类似一般减少是未知的。在我们的贡献中,我们研究了从综合征解码问题到常规解码问题实例的两种不同的一般多项式约简。第一种减少是基于构造一个特殊的奇偶校验矩阵,该矩阵在奇偶校验矩阵中编码权重计数器的进度,然后将其作为常规解码oracle的输入。目标正则解码问题具有明显更长的码长,这与原始SDP的权重参数线性相关。第二种简化是基于将SDP转化为多右手边形式的非线性方程组,然后应用RSD oracle来求解该系统。第二次还原具有更好的代码长度。第二次约简的RSD和SDP码长之比可以用一个常数(小于8)来限定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial reduction from syndrome decoding problem to regular decoding problem

The regular decoding problem asks for (the existence of) regular solutions to a syndrome decoding problem (SDP). This problem has increased applications in post-quantum cryptography and cryptanalysis. Recently, Esser and Santini explored in depth the connection between the regular (RSD) and classical syndrome decoding problems. They have observed that while RSD to SDP reductions are known (in any parametric regime), a similar generic reduction from SDP to RSD is not known. In our contribution, we examine two different generic polynomial reductions from a syndrome decoding problem to a regular decoding problem instance. The first reduction is based on constructing a special parity check matrix that encodes weight counter progression inside the parity check matrix, which is then the input of the regular decoding oracle. The target regular decoding problem has a significantly longer code length, that depends linearly on the weight parameter of the original SDP. The second reduction is based on translating the SDP to a non-linear system of equations in the Multiple Right-Hand Sides form, and then applying RSD oracle to solve this system. The second reduction has better code length. The ratio between RSD and SDP code length of the second reduction can be bounded by a constant (less than 8).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信