利用深度生成模型发现新的拓扑绝缘体和半金属

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Hong, Taikang Chen, Dalong Jin, Yu Zhu, Heng Gao, Kun Zhao, Tongyi Zhang, Wei Ren, Guixin Cao
{"title":"利用深度生成模型发现新的拓扑绝缘体和半金属","authors":"Tao Hong, Taikang Chen, Dalong Jin, Yu Zhu, Heng Gao, Kun Zhao, Tongyi Zhang, Wei Ren, Guixin Cao","doi":"10.1038/s41535-025-00731-0","DOIUrl":null,"url":null,"abstract":"<p>Topological materials possess unique electronic properties and hold immense attraction to both fundamental physics research and practical applications. Over the past decades, the discovery of new topological materials has relied on the symmetry-based analysis of the quantum wave function. In this study, we propose an efficient inverse design method CTMT (CTMT: CDVAE, Topogivity, interatomic potentials (IAPs) as realized in M3GNet, and TQC) utilizing deep generative machine learning models to discover novel topological insulators and semimetals in a much-fast and low-cost manner. This method covers the entire process of new crystal structure generation, heuristic rule screening, fast stability estimation, and topology type diagnosis, resulting in 4 topological insulators and 16 topological semimetals. Especially, the newly discovered topological materials include several chiral Kramers-Weyl fermion semimetals and chiral materials with low symmetry, whose topology is previously considered challenging to discern. These findings demonstrate the capability of CTMT in discovering topological materials and its great potential for data-driven inverse design of advanced functional materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"148 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of new topological insulators and semimetals using deep generative models\",\"authors\":\"Tao Hong, Taikang Chen, Dalong Jin, Yu Zhu, Heng Gao, Kun Zhao, Tongyi Zhang, Wei Ren, Guixin Cao\",\"doi\":\"10.1038/s41535-025-00731-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Topological materials possess unique electronic properties and hold immense attraction to both fundamental physics research and practical applications. Over the past decades, the discovery of new topological materials has relied on the symmetry-based analysis of the quantum wave function. In this study, we propose an efficient inverse design method CTMT (CTMT: CDVAE, Topogivity, interatomic potentials (IAPs) as realized in M3GNet, and TQC) utilizing deep generative machine learning models to discover novel topological insulators and semimetals in a much-fast and low-cost manner. This method covers the entire process of new crystal structure generation, heuristic rule screening, fast stability estimation, and topology type diagnosis, resulting in 4 topological insulators and 16 topological semimetals. Especially, the newly discovered topological materials include several chiral Kramers-Weyl fermion semimetals and chiral materials with low symmetry, whose topology is previously considered challenging to discern. These findings demonstrate the capability of CTMT in discovering topological materials and its great potential for data-driven inverse design of advanced functional materials.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00731-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00731-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑材料具有独特的电子特性,在基础物理研究和实际应用中具有巨大的吸引力。在过去的几十年里,新的拓扑材料的发现依赖于量子波函数的对称性分析。在这项研究中,我们提出了一种高效的反设计方法CTMT (CTMT: CDVAE, topovity, interatomic potential (IAPs),如在M3GNet和TQC中实现),利用深度生成机器学习模型以快速和低成本的方式发现新的拓扑绝缘体和半金属。该方法涵盖了新晶体结构生成、启发式规则筛选、快速稳定性估计和拓扑类型诊断的全过程,得到了4个拓扑绝缘体和16个拓扑半金属。特别是,新发现的拓扑材料包括几种手性Kramers-Weyl费米子半金属和低对称性的手性材料,其拓扑结构以前被认为具有挑战性。这些发现证明了CTMT在发现拓扑材料方面的能力,以及它在数据驱动的先进功能材料逆设计方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of new topological insulators and semimetals using deep generative models

Discovery of new topological insulators and semimetals using deep generative models

Topological materials possess unique electronic properties and hold immense attraction to both fundamental physics research and practical applications. Over the past decades, the discovery of new topological materials has relied on the symmetry-based analysis of the quantum wave function. In this study, we propose an efficient inverse design method CTMT (CTMT: CDVAE, Topogivity, interatomic potentials (IAPs) as realized in M3GNet, and TQC) utilizing deep generative machine learning models to discover novel topological insulators and semimetals in a much-fast and low-cost manner. This method covers the entire process of new crystal structure generation, heuristic rule screening, fast stability estimation, and topology type diagnosis, resulting in 4 topological insulators and 16 topological semimetals. Especially, the newly discovered topological materials include several chiral Kramers-Weyl fermion semimetals and chiral materials with low symmetry, whose topology is previously considered challenging to discern. These findings demonstrate the capability of CTMT in discovering topological materials and its great potential for data-driven inverse design of advanced functional materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信