从时间序列推断微生物群落中的资源竞争。

ArXiv Pub Date : 2025-01-17
Xiaowen Chen, Kyle Crocker, Seppe Kuehn, Aleksandra M Walczak, Thierry Mora
{"title":"从时间序列推断微生物群落中的资源竞争。","authors":"Xiaowen Chen, Kyle Crocker, Seppe Kuehn, Aleksandra M Walczak, Thierry Mora","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system. However, inferring the metabolic capabilities of individual taxa, and their competition with other taxa, within a community is challenging and unresolved. Here we address this gap in knowledge by leveraging dynamic measurements of abundances in communities. We show that simple correlations are often misleading in predicting resource competition. We show that spectral methods such as the cross-power spectral density (CPSD) and coherence that account for time-delayed effects are superior metrics for inferring the structure of resource competition in communities. We first demonstrate this fact on synthetic data generated from consumer-resource models with time-dependent resource availability, where taxa are organized into groups or guilds with similar resource preferences. By applying spectral methods to oceanic plankton time-series data, we demonstrate that these methods detect interaction structures among species with similar genomic sequences. Our results indicate that analyzing temporal data across multiple timescales can reveal the underlying structure of resource competition within communities.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring resource competition in microbial communities from time series.\",\"authors\":\"Xiaowen Chen, Kyle Crocker, Seppe Kuehn, Aleksandra M Walczak, Thierry Mora\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system. However, inferring the metabolic capabilities of individual taxa, and their competition with other taxa, within a community is challenging and unresolved. Here we address this gap in knowledge by leveraging dynamic measurements of abundances in communities. We show that simple correlations are often misleading in predicting resource competition. We show that spectral methods such as the cross-power spectral density (CPSD) and coherence that account for time-delayed effects are superior metrics for inferring the structure of resource competition in communities. We first demonstrate this fact on synthetic data generated from consumer-resource models with time-dependent resource availability, where taxa are organized into groups or guilds with similar resource preferences. By applying spectral methods to oceanic plankton time-series data, we demonstrate that these methods detect interaction structures among species with similar genomic sequences. Our results indicate that analyzing temporal data across multiple timescales can reveal the underlying structure of resource competition within communities.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring resource competition in microbial communities from time series.

The competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system. However, inferring the metabolic capabilities of individual taxa, and their competition with other taxa, within a community is challenging and unresolved. Here we address this gap in knowledge by leveraging dynamic measurements of abundances in communities. We show that simple correlations are often misleading in predicting resource competition. We show that spectral methods such as the cross-power spectral density (CPSD) and coherence that account for time-delayed effects are superior metrics for inferring the structure of resource competition in communities. We first demonstrate this fact on synthetic data generated from consumer-resource models with time-dependent resource availability, where taxa are organized into groups or guilds with similar resource preferences. By applying spectral methods to oceanic plankton time-series data, we demonstrate that these methods detect interaction structures among species with similar genomic sequences. Our results indicate that analyzing temporal data across multiple timescales can reveal the underlying structure of resource competition within communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信