{"title":"RNA 样式的宇宙有多大?利用拓扑描述符对 RNA 图元进行聚类分析","authors":"Rui Wang, Tamar Schlick","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% graphs correspond to approximately 200,000 known RNA atomic fragments (collected in 2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely to be associated with RNA structures, we apply computational topology descriptors using the Persistent Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering algorithms that partition all possible dual graphs into two clusters, RNA-like cluster and non-RNA-like cluster. The distance of each dual graph to the center of the RNA-like cluster represents the likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes 97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the hypothetical RNAs are predicted to be RNA-like. Significantly, we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the top 15 non-RNA-like dual graphs tend not to have any subgraphs. Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs is evident when comparing their topological features. These findings provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs, perhaps anti-viral therapeutics by subgraph assembly.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760235/pdf/","citationCount":"0","resultStr":"{\"title\":\"How Large is the Universe of RNA-Like Motifs? A Clustering Analysis of RNA Graph Motifs Using Topological Descriptors.\",\"authors\":\"Rui Wang, Tamar Schlick\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% graphs correspond to approximately 200,000 known RNA atomic fragments (collected in 2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely to be associated with RNA structures, we apply computational topology descriptors using the Persistent Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering algorithms that partition all possible dual graphs into two clusters, RNA-like cluster and non-RNA-like cluster. The distance of each dual graph to the center of the RNA-like cluster represents the likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes 97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the hypothetical RNAs are predicted to be RNA-like. Significantly, we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the top 15 non-RNA-like dual graphs tend not to have any subgraphs. Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs is evident when comparing their topological features. These findings provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs, perhaps anti-viral therapeutics by subgraph assembly.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How Large is the Universe of RNA-Like Motifs? A Clustering Analysis of RNA Graph Motifs Using Topological Descriptors.
We introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.11% graphs correspond to approximately 200,000 known RNA atomic fragments (collected in 2021) using the RNA-as-Graphs (RAG) mapping method. The remaining 99.89% of the dual graphs may be RNA-like or non-RNA-like. To determine which dual graphs in the 99.89% hypothetical set are more likely to be associated with RNA structures, we apply computational topology descriptors using the Persistent Spectral Graphs (PSG) method to characterize each graph using 19 PSG-based features and use clustering algorithms that partition all possible dual graphs into two clusters, RNA-like cluster and non-RNA-like cluster. The distance of each dual graph to the center of the RNA-like cluster represents the likelihood of it belonging to RNA structures. From validation, our PSG-based RNA-like cluster includes 97.3% of the 121 known RNA dual graphs, suggesting good performance. Furthermore, 46.017% of the hypothetical RNAs are predicted to be RNA-like. Significantly, we observe that all the top 15 RNA-like dual graphs can be separated into multiple subgraphs, whereas the top 15 non-RNA-like dual graphs tend not to have any subgraphs. Moreover, a significant topological difference between top RNA-like and non-RNA-like graphs is evident when comparing their topological features. These findings provide valuable insights into the size of the RNA motif universe and RNA design strategies, offering a novel framework for predicting RNA graph topologies and guiding the discovery of novel RNA motifs, perhaps anti-viral therapeutics by subgraph assembly.