Lipidomics and Metabolomics (ImpLiMet):一个基于web的应用程序,用于优化和选择缺失数据的输入方法。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae209
Huiting Ou, Anuradha Surendra, Graeme S V McDowell, Emily Hashimoto-Roth, Jianguo Xia, Steffany A L Bennett, Miroslava Čuperlović-Culf
{"title":"Lipidomics and Metabolomics (ImpLiMet):一个基于web的应用程序,用于优化和选择缺失数据的输入方法。","authors":"Huiting Ou, Anuradha Surendra, Graeme S V McDowell, Emily Hashimoto-Roth, Jianguo Xia, Steffany A L Bennett, Miroslava Čuperlović-Culf","doi":"10.1093/bioadv/vbae209","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Missing values are prevalent in high-throughput measurements due to various experimental or analytical reasons. Imputation, the process of replacing missing values in a dataset with estimated values, plays an important role in multivariate and machine learning analyses. The three missingness patterns, including missing completely at random, missing at random, and missing not at random, describe unique dependencies between the missing and observed data. The optimal imputation method for each dataset depends on the type of data, the cause of the missingness, and the nature of relationships between the missing and observed data. The challenge is to identify the optimal imputation solution for a given dataset.</p><p><strong>Results: </strong>ImpLiMet: is a user-friendly web-platform that enables users to impute missing data using eight different methods. For a given dataset, ImpLiMet suggests the optimal imputation solution through a grid search-based investigation of the error rate for imputation across three missingness data simulations. The effect of imputation can be visually assessed by histogram, kurtosis, and skewness, as well as principal component analysis comparing the impact of the chosen imputation method on the distribution and overall behavior of the data.</p><p><strong>Availability and implementation: </strong>ImpLiMet is freely available at https://complimet.ca/shiny/implimet/ and https://github.com/complimet/ImpLiMet.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae209"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imputation for Lipidomics and Metabolomics (ImpLiMet): a web-based application for optimization and method selection for missing data imputation.\",\"authors\":\"Huiting Ou, Anuradha Surendra, Graeme S V McDowell, Emily Hashimoto-Roth, Jianguo Xia, Steffany A L Bennett, Miroslava Čuperlović-Culf\",\"doi\":\"10.1093/bioadv/vbae209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Missing values are prevalent in high-throughput measurements due to various experimental or analytical reasons. Imputation, the process of replacing missing values in a dataset with estimated values, plays an important role in multivariate and machine learning analyses. The three missingness patterns, including missing completely at random, missing at random, and missing not at random, describe unique dependencies between the missing and observed data. The optimal imputation method for each dataset depends on the type of data, the cause of the missingness, and the nature of relationships between the missing and observed data. The challenge is to identify the optimal imputation solution for a given dataset.</p><p><strong>Results: </strong>ImpLiMet: is a user-friendly web-platform that enables users to impute missing data using eight different methods. For a given dataset, ImpLiMet suggests the optimal imputation solution through a grid search-based investigation of the error rate for imputation across three missingness data simulations. The effect of imputation can be visually assessed by histogram, kurtosis, and skewness, as well as principal component analysis comparing the impact of the chosen imputation method on the distribution and overall behavior of the data.</p><p><strong>Availability and implementation: </strong>ImpLiMet is freely available at https://complimet.ca/shiny/implimet/ and https://github.com/complimet/ImpLiMet.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbae209\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:由于各种实验或分析原因,在高通量测量中普遍存在缺失值。在多元分析和机器学习分析中,用估计值替换数据集中缺失值的过程扮演着重要的角色。三种缺失模式,包括完全随机缺失、随机缺失和非随机缺失,描述了缺失和观测数据之间的唯一依赖关系。每个数据集的最佳输入方法取决于数据的类型、缺失的原因以及缺失数据与观测数据之间关系的性质。挑战在于确定给定数据集的最佳输入解决方案。ImpLiMet:是一个用户友好的网络平台,使用户能够使用八种不同的方法来输入缺失的数据。对于给定的数据集,ImpLiMet通过基于网格搜索的调查,在三个缺失数据模拟中提出了最优的插值解决方案。通过直方图、峰度和偏度以及主成分分析,可以直观地评估imputation的效果,比较所选择的imputation方法对数据分布和整体行为的影响。可用性和实现:ImpLiMet可在https://complimet.ca/shiny/implimet/和https://github.com/complimet/ImpLiMet免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imputation for Lipidomics and Metabolomics (ImpLiMet): a web-based application for optimization and method selection for missing data imputation.

Motivation: Missing values are prevalent in high-throughput measurements due to various experimental or analytical reasons. Imputation, the process of replacing missing values in a dataset with estimated values, plays an important role in multivariate and machine learning analyses. The three missingness patterns, including missing completely at random, missing at random, and missing not at random, describe unique dependencies between the missing and observed data. The optimal imputation method for each dataset depends on the type of data, the cause of the missingness, and the nature of relationships between the missing and observed data. The challenge is to identify the optimal imputation solution for a given dataset.

Results: ImpLiMet: is a user-friendly web-platform that enables users to impute missing data using eight different methods. For a given dataset, ImpLiMet suggests the optimal imputation solution through a grid search-based investigation of the error rate for imputation across three missingness data simulations. The effect of imputation can be visually assessed by histogram, kurtosis, and skewness, as well as principal component analysis comparing the impact of the chosen imputation method on the distribution and overall behavior of the data.

Availability and implementation: ImpLiMet is freely available at https://complimet.ca/shiny/implimet/ and https://github.com/complimet/ImpLiMet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信