Byeong-Hyeon Kim, Sujin Kim, Yunkwon Nam, Yong Ho Park, Seong Min Shin, Minho Moon
{"title":"阿尔茨海默病的第二代抗淀粉样蛋白单克隆抗体:现状和未来展望","authors":"Byeong-Hyeon Kim, Sujin Kim, Yunkwon Nam, Yong Ho Park, Seong Min Shin, Minho Moon","doi":"10.1186/s40035-025-00465-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.S. Food and Drug Administration has approved three anti-amyloid MABs, aducanumab (Aduhelm®), lecanemab (Leqembi®), and donanemab (Kisunla™). Notably, lecanemab received traditional approval after demonstrating clinical benefit, supporting the Aβ cascade hypothesis. These MABs targeting Aβ are categorized based on their affinity to diverse conformational features of Aβ, including monomer, fibril, protofibril, and plaque forms of Aβ as well as pyroglutamate Aβ. First-generation MABs targeting the non-toxic monomeric Aβ, such as solanezumab, bapineuzumab, and crenezumab, failed to demonstrate clinical benefit for AD in clinical trials. In contrast, second-generation MABs, including aducanumab, lecanemab, donanemab, and gantenerumab directed against pathogenic Aβ species and aggregates have shown that reducing Aβ deposition can be an effective strategy to slow cognitive impairment in AD. In this review, we provide a comprehensive overview of the current status, mechanisms, outcomes, and limitations of second-generation MABs for the clinical treatment of AD. Moreover, we discuss the perspectives and future directions of anti-amyloid MABs in the treatment of AD.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"6"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Second-generation anti-amyloid monoclonal antibodies for Alzheimer's disease: current landscape and future perspectives.\",\"authors\":\"Byeong-Hyeon Kim, Sujin Kim, Yunkwon Nam, Yong Ho Park, Seong Min Shin, Minho Moon\",\"doi\":\"10.1186/s40035-025-00465-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.S. Food and Drug Administration has approved three anti-amyloid MABs, aducanumab (Aduhelm®), lecanemab (Leqembi®), and donanemab (Kisunla™). Notably, lecanemab received traditional approval after demonstrating clinical benefit, supporting the Aβ cascade hypothesis. These MABs targeting Aβ are categorized based on their affinity to diverse conformational features of Aβ, including monomer, fibril, protofibril, and plaque forms of Aβ as well as pyroglutamate Aβ. First-generation MABs targeting the non-toxic monomeric Aβ, such as solanezumab, bapineuzumab, and crenezumab, failed to demonstrate clinical benefit for AD in clinical trials. In contrast, second-generation MABs, including aducanumab, lecanemab, donanemab, and gantenerumab directed against pathogenic Aβ species and aggregates have shown that reducing Aβ deposition can be an effective strategy to slow cognitive impairment in AD. In this review, we provide a comprehensive overview of the current status, mechanisms, outcomes, and limitations of second-generation MABs for the clinical treatment of AD. Moreover, we discuss the perspectives and future directions of anti-amyloid MABs in the treatment of AD.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"14 1\",\"pages\":\"6\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-025-00465-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00465-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)是最常见的痴呆症类型。单克隆抗体(mab)通过选择性靶向关键致病因子,如淀粉样蛋白-β (a β)肽、tau蛋白和神经炎症,成为治疗AD的一种有前景的方法。具体来说,基于其从AD患者大脑中去除β斑块的功效,美国食品和药物管理局已经批准了三种抗淀粉样蛋白单克隆抗体,aducanumab (Aduhelm®),lecanemab (Leqembi®)和donanemab (Kisunla™)。值得注意的是,lecanemab在证明临床益处后获得了传统的批准,支持了Aβ级联假说。这些靶向Aβ的单克隆抗体根据其对Aβ的不同构象特征的亲和力进行分类,包括Aβ的单体、原纤维、原纤维和斑块形式以及焦谷氨酸Aβ。第一代针对无毒单体Aβ的单克隆抗体,如solanezumab、bapineuzumab和crenezumab,在临床试验中未能证明对阿尔茨海默病的临床疗效。相比之下,第二代单克隆抗体,包括aducanumab、lecanemab、donanemab和gantenerumab,针对致病性Aβ物种和聚集体,已经表明减少Aβ沉积可以是减缓AD认知功能障碍的有效策略。在这篇综述中,我们全面概述了第二代单克隆抗体用于阿尔茨海默病临床治疗的现状、机制、结果和局限性。此外,我们还讨论了抗淀粉样蛋白单克隆抗体治疗AD的前景和未来发展方向。
Second-generation anti-amyloid monoclonal antibodies for Alzheimer's disease: current landscape and future perspectives.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.S. Food and Drug Administration has approved three anti-amyloid MABs, aducanumab (Aduhelm®), lecanemab (Leqembi®), and donanemab (Kisunla™). Notably, lecanemab received traditional approval after demonstrating clinical benefit, supporting the Aβ cascade hypothesis. These MABs targeting Aβ are categorized based on their affinity to diverse conformational features of Aβ, including monomer, fibril, protofibril, and plaque forms of Aβ as well as pyroglutamate Aβ. First-generation MABs targeting the non-toxic monomeric Aβ, such as solanezumab, bapineuzumab, and crenezumab, failed to demonstrate clinical benefit for AD in clinical trials. In contrast, second-generation MABs, including aducanumab, lecanemab, donanemab, and gantenerumab directed against pathogenic Aβ species and aggregates have shown that reducing Aβ deposition can be an effective strategy to slow cognitive impairment in AD. In this review, we provide a comprehensive overview of the current status, mechanisms, outcomes, and limitations of second-generation MABs for the clinical treatment of AD. Moreover, we discuss the perspectives and future directions of anti-amyloid MABs in the treatment of AD.
期刊介绍:
Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.