LPA1受体缺陷小鼠情绪行为和神经递质系统的性别特异性改变

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Laura Sánchez-Marín , Violeta Jiménez-Castilla , María Flores-López , Juan A. Navarro , Ana Gavito , Eduardo Blanco-Calvo , Luis J. Santín , Francisco J. Pavón-Morón , Fernando Rodríguez de Fonseca , Antonia Serrano
{"title":"LPA1受体缺陷小鼠情绪行为和神经递质系统的性别特异性改变","authors":"Laura Sánchez-Marín ,&nbsp;Violeta Jiménez-Castilla ,&nbsp;María Flores-López ,&nbsp;Juan A. Navarro ,&nbsp;Ana Gavito ,&nbsp;Eduardo Blanco-Calvo ,&nbsp;Luis J. Santín ,&nbsp;Francisco J. Pavón-Morón ,&nbsp;Fernando Rodríguez de Fonseca ,&nbsp;Antonia Serrano","doi":"10.1016/j.neuropharm.2025.110325","DOIUrl":null,"url":null,"abstract":"<div><div>Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA<sub>1</sub> receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA<sub>1</sub> receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA<sub>1</sub>-null mice of both sexes. We hypothesized LPA<sub>1</sub> receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA<sub>1</sub>-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA<sub>1</sub>-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA<sub>1</sub> receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"268 ","pages":"Article 110325"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA1 receptor-deficient mice\",\"authors\":\"Laura Sánchez-Marín ,&nbsp;Violeta Jiménez-Castilla ,&nbsp;María Flores-López ,&nbsp;Juan A. Navarro ,&nbsp;Ana Gavito ,&nbsp;Eduardo Blanco-Calvo ,&nbsp;Luis J. Santín ,&nbsp;Francisco J. Pavón-Morón ,&nbsp;Fernando Rodríguez de Fonseca ,&nbsp;Antonia Serrano\",\"doi\":\"10.1016/j.neuropharm.2025.110325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA<sub>1</sub> receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA<sub>1</sub> receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA<sub>1</sub>-null mice of both sexes. We hypothesized LPA<sub>1</sub> receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA<sub>1</sub>-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA<sub>1</sub>-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA<sub>1</sub> receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"268 \",\"pages\":\"Article 110325\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390825000310\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825000310","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA1 receptor-deficient mice
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA1 receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA1 receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA1-null mice of both sexes. We hypothesized LPA1 receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA1-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA1-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA1 receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信