疟疾中的细胞外囊泡:蛋白质组学见解、体外和体内研究表明需要过渡到人类自然感染。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-03-12 Epub Date: 2025-01-27 DOI:10.1128/mbio.02304-24
Núria Sima, Alberto Ayllon-Hermida, Carmen Fernández-Becerra, Hernando A Del Portillo
{"title":"疟疾中的细胞外囊泡:蛋白质组学见解、体外和体内研究表明需要过渡到人类自然感染。","authors":"Núria Sima, Alberto Ayllon-Hermida, Carmen Fernández-Becerra, Hernando A Del Portillo","doi":"10.1128/mbio.02304-24","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022. Noticeably, despite effective control measurements, in 2022 there were an estimated 249 million malaria cases in 85 malaria-endemic countries and an increase of 5 million cases compared with 2021. Further understanding the biology, epidemiology, and pathogenesis of human malaria is therefore essential for achieving malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed nanoparticles pivotal in intercellular communication and secreted by all cell types. Here, we will review what is currently known about EVs in malaria, from biogenesis and cargo to molecular insights of pathophysiology. Of relevance, a meta-analysis of proteomics cargo, and comparisons between <i>in vitro</i> and <i>in vivo</i> human studies revealed striking differences with those few studies reported from patients. Thus, indicating the need for rigor standardization of methodologies and for transitioning to human infections to elucidate their physiological role. We conclude with a focus on translational aspects in diagnosis and vaccine development and highlight key gaps in the knowledge of EVs in malaria research.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0230424"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicles in malaria: proteomics insights, <i>in vitro</i> and <i>in vivo</i> studies indicate the need for transitioning to natural human infections.\",\"authors\":\"Núria Sima, Alberto Ayllon-Hermida, Carmen Fernández-Becerra, Hernando A Del Portillo\",\"doi\":\"10.1128/mbio.02304-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022. Noticeably, despite effective control measurements, in 2022 there were an estimated 249 million malaria cases in 85 malaria-endemic countries and an increase of 5 million cases compared with 2021. Further understanding the biology, epidemiology, and pathogenesis of human malaria is therefore essential for achieving malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed nanoparticles pivotal in intercellular communication and secreted by all cell types. Here, we will review what is currently known about EVs in malaria, from biogenesis and cargo to molecular insights of pathophysiology. Of relevance, a meta-analysis of proteomics cargo, and comparisons between <i>in vitro</i> and <i>in vivo</i> human studies revealed striking differences with those few studies reported from patients. Thus, indicating the need for rigor standardization of methodologies and for transitioning to human infections to elucidate their physiological role. We conclude with a focus on translational aspects in diagnosis and vaccine development and highlight key gaps in the knowledge of EVs in malaria research.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0230424\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.02304-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02304-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracellular vesicles in malaria: proteomics insights, in vitro and in vivo studies indicate the need for transitioning to natural human infections.

Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022. Noticeably, despite effective control measurements, in 2022 there were an estimated 249 million malaria cases in 85 malaria-endemic countries and an increase of 5 million cases compared with 2021. Further understanding the biology, epidemiology, and pathogenesis of human malaria is therefore essential for achieving malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed nanoparticles pivotal in intercellular communication and secreted by all cell types. Here, we will review what is currently known about EVs in malaria, from biogenesis and cargo to molecular insights of pathophysiology. Of relevance, a meta-analysis of proteomics cargo, and comparisons between in vitro and in vivo human studies revealed striking differences with those few studies reported from patients. Thus, indicating the need for rigor standardization of methodologies and for transitioning to human infections to elucidate their physiological role. We conclude with a focus on translational aspects in diagnosis and vaccine development and highlight key gaps in the knowledge of EVs in malaria research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信