探索铁下垂和mirna:癌症调节和治疗的意义。

IF 3.7 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-06-01 Epub Date: 2025-01-27 DOI:10.1007/s11010-024-05169-9
Mobarakeh Ajam-Hosseini, Sadegh Babashah
{"title":"探索铁下垂和mirna:癌症调节和治疗的意义。","authors":"Mobarakeh Ajam-Hosseini, Sadegh Babashah","doi":"10.1007/s11010-024-05169-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation. Due to their diversity, unique properties, and dynamic expression patterns in diseases, exosomal miRNAs are emerging as promising biomarkers. Exosomes act as biological messengers, delivering miRNAs to target cells through specific internalization, thus influencing the ferroptosis response in recipient cells. This review summarizes the roles of miRNAs, with particular focus on exosomal miRNAs, in ferroptosis and their implications for cancer pathology. By examining the molecular mechanisms of miRNAs, we aim to provide valuable insights into potential therapeutic approaches.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3455-3476"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.\",\"authors\":\"Mobarakeh Ajam-Hosseini, Sadegh Babashah\",\"doi\":\"10.1007/s11010-024-05169-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation. Due to their diversity, unique properties, and dynamic expression patterns in diseases, exosomal miRNAs are emerging as promising biomarkers. Exosomes act as biological messengers, delivering miRNAs to target cells through specific internalization, thus influencing the ferroptosis response in recipient cells. This review summarizes the roles of miRNAs, with particular focus on exosomal miRNAs, in ferroptosis and their implications for cancer pathology. By examining the molecular mechanisms of miRNAs, we aim to provide valuable insights into potential therapeutic approaches.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3455-3476\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05169-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05169-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁下垂是一种新型的、铁依赖性的非凋亡细胞死亡形式,其特征是脂质活性氧(ROS)的积累和线粒体收缩。它与各种疾病,特别是癌症,在各个阶段的发病和进展密切相关,使其成为制定治疗策略的研究重点。大量研究探索了microRNAs (miRNAs)通过调节铁代谢和脂质过氧化相关关键基因的表达来调节铁下垂的作用。由于其多样性、独特的特性和疾病中的动态表达模式,外泌体mirna正成为有前途的生物标志物。外泌体作为生物信使,通过特异性内化将mirna传递到靶细胞,从而影响受体细胞对铁凋亡的反应。本文综述了mirna在铁下垂中的作用,特别是外泌体mirna,以及它们对癌症病理的影响。通过研究mirna的分子机制,我们旨在为潜在的治疗方法提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation. Due to their diversity, unique properties, and dynamic expression patterns in diseases, exosomal miRNAs are emerging as promising biomarkers. Exosomes act as biological messengers, delivering miRNAs to target cells through specific internalization, thus influencing the ferroptosis response in recipient cells. This review summarizes the roles of miRNAs, with particular focus on exosomal miRNAs, in ferroptosis and their implications for cancer pathology. By examining the molecular mechanisms of miRNAs, we aim to provide valuable insights into potential therapeutic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信