Daijing Wei , Jiawei Hu , Xudong Wu , Yi Li , Wenlin Wu , Ying Xu , Xuefei Wang , Yinggang Luo
{"title":"碳水化合物-活性酶催化的复杂天然产物糖苷的立体选择性糖基化。","authors":"Daijing Wei , Jiawei Hu , Xudong Wu , Yi Li , Wenlin Wu , Ying Xu , Xuefei Wang , Yinggang Luo","doi":"10.1016/j.enzmictec.2025.110589","DOIUrl":null,"url":null,"abstract":"<div><div>Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys). ASP OleD, a mutant of glycosyltransferase OleD from <em>Streptomyces antibioticus</em>, catalyzed an explicit <em>β</em>-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the representative plant-derived complex natural product glycosides, protodioscin (<strong>1</strong>) and epimedin C (<strong>2</strong>), producing two complex glycoside derivatives. The glycoside hydrolase Δ27ThCGT, a truncated cyclodextrin glucanotransferase from <em>Thermoanaerobacter</em> sp., exhibited a definite <em>α</em>-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the glycosides <strong>1</strong>, <strong>2</strong>, and astragaloside IV (<strong>3</strong>), generating four complex glycoside derivatives. The chemical structures and absolute configurations of these enzymatic glycosylation products were determined by analysis of their HRMS and NMR data. The present study expands the enzymatic glycosylation diversification of complex glycosides catalyzed by the CAZys.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"185 ","pages":"Article 110589"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbohydrate-active enzyme-catalyzed stereoselective glycosylation of complex natural product glycosides\",\"authors\":\"Daijing Wei , Jiawei Hu , Xudong Wu , Yi Li , Wenlin Wu , Ying Xu , Xuefei Wang , Yinggang Luo\",\"doi\":\"10.1016/j.enzmictec.2025.110589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys). ASP OleD, a mutant of glycosyltransferase OleD from <em>Streptomyces antibioticus</em>, catalyzed an explicit <em>β</em>-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the representative plant-derived complex natural product glycosides, protodioscin (<strong>1</strong>) and epimedin C (<strong>2</strong>), producing two complex glycoside derivatives. The glycoside hydrolase Δ27ThCGT, a truncated cyclodextrin glucanotransferase from <em>Thermoanaerobacter</em> sp., exhibited a definite <em>α</em>-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the glycosides <strong>1</strong>, <strong>2</strong>, and astragaloside IV (<strong>3</strong>), generating four complex glycoside derivatives. The chemical structures and absolute configurations of these enzymatic glycosylation products were determined by analysis of their HRMS and NMR data. The present study expands the enzymatic glycosylation diversification of complex glycosides catalyzed by the CAZys.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"185 \",\"pages\":\"Article 110589\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925000092\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000092","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
天然产物及其衍生物是宝贵的资源,在各个工业领域有着广泛的应用。酶糖基化是实现天然产物化学结构多样化和生物活性交替的有效途径。在此,我们报道了由两种碳水化合物活性酶(CAZys)催化的复杂天然产物糖苷的立体选择性糖基化。ASP OleD是链霉菌(Streptomyces antibiotic ticus)糖基转移酶OleD的突变体,它催化了代表性植物衍生的复杂天然产物糖苷原薯蓣皂苷(protodioscin, 1)和epimedin C (epimedin, 2)的糖基部分的OH基的β-1,x-连锁糖基化,生成了两种复杂的糖苷衍生物。糖苷水解酶Δ27ThCGT是一种来自Thermoanaerobacter sp.的截断环糊精葡糖苷转移酶,在糖苷1、2和黄芪甲苷IV(3)的糖基部分的OH基上发生了α-1,x-连锁糖基化,生成了四个复杂的糖苷衍生物。通过对酶促糖基化产物的HRMS和NMR数据分析,确定了它们的化学结构和绝对构型。本研究扩展了由CAZys催化的复合糖苷的酶糖基化多样化。
Carbohydrate-active enzyme-catalyzed stereoselective glycosylation of complex natural product glycosides
Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys). ASP OleD, a mutant of glycosyltransferase OleD from Streptomyces antibioticus, catalyzed an explicit β-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the representative plant-derived complex natural product glycosides, protodioscin (1) and epimedin C (2), producing two complex glycoside derivatives. The glycoside hydrolase Δ27ThCGT, a truncated cyclodextrin glucanotransferase from Thermoanaerobacter sp., exhibited a definite α-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the glycosides 1, 2, and astragaloside IV (3), generating four complex glycoside derivatives. The chemical structures and absolute configurations of these enzymatic glycosylation products were determined by analysis of their HRMS and NMR data. The present study expands the enzymatic glycosylation diversification of complex glycosides catalyzed by the CAZys.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.