基于人工智能的低温电镜生物分子结构建模方法。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Farhanaz Farheen , Genki Terashi , Han Zhu , Daisuke Kihara
{"title":"基于人工智能的低温电镜生物分子结构建模方法。","authors":"Farhanaz Farheen ,&nbsp;Genki Terashi ,&nbsp;Han Zhu ,&nbsp;Daisuke Kihara","doi":"10.1016/j.sbi.2025.102989","DOIUrl":null,"url":null,"abstract":"<div><div>Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the determination of macromolecular structures that were challenging to study with conventional methods. Processing cryo-EM data involves several computational steps to derive three-dimensional structures from raw projections. Recent advancements in artificial intelligence (AI) including deep learning have significantly improved the performance of these processes. In this review, we discuss state-of-the-art AI-based techniques used in key steps of cryo-EM data processing, including macromolecular structure modeling and heterogeneity analysis.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102989"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based methods for biomolecular structure modeling for Cryo-EM\",\"authors\":\"Farhanaz Farheen ,&nbsp;Genki Terashi ,&nbsp;Han Zhu ,&nbsp;Daisuke Kihara\",\"doi\":\"10.1016/j.sbi.2025.102989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the determination of macromolecular structures that were challenging to study with conventional methods. Processing cryo-EM data involves several computational steps to derive three-dimensional structures from raw projections. Recent advancements in artificial intelligence (AI) including deep learning have significantly improved the performance of these processes. In this review, we discuss state-of-the-art AI-based techniques used in key steps of cryo-EM data processing, including macromolecular structure modeling and heterogeneity analysis.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"90 \",\"pages\":\"Article 102989\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000077\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低温电子显微镜(Cryo-EM)通过确定传统方法难以研究的大分子结构,彻底改变了结构生物学。处理低温电镜数据涉及几个计算步骤,以从原始投影中导出三维结构。包括深度学习在内的人工智能(AI)的最新进展显著提高了这些过程的性能。在这篇综述中,我们讨论了在低温电镜数据处理的关键步骤中使用的最先进的人工智能技术,包括大分子结构建模和异质性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI-based methods for biomolecular structure modeling for Cryo-EM

AI-based methods for biomolecular structure modeling for Cryo-EM
Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the determination of macromolecular structures that were challenging to study with conventional methods. Processing cryo-EM data involves several computational steps to derive three-dimensional structures from raw projections. Recent advancements in artificial intelligence (AI) including deep learning have significantly improved the performance of these processes. In this review, we discuss state-of-the-art AI-based techniques used in key steps of cryo-EM data processing, including macromolecular structure modeling and heterogeneity analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信