{"title":"Detection of circular permutations by Protein Language Models","authors":"Yue Hu , Bin Huang , Chun Zi Zang , Jia Jie Xu","doi":"10.1016/j.csbj.2024.12.029","DOIUrl":null,"url":null,"abstract":"<div><div>Protein circular permutations are crucial for understanding protein evolution and functionality. Traditional detection methods face challenges: sequence-based approaches struggle with detecting distant homologs, while structure-based approaches are limited by the need for structure generation and often treat proteins as rigid bodies. Protein Language Model-based alignment tools have shown advantages in utilizing sequence information to overcome the challenges of detecting distant homologs without requiring structural input. However, many current Protein Language Model-based alignment methods, which rely on sequence alignment algorithms like the Smith-Waterman algorithm, face significant difficulties when dealing with circular permutation (CP) due to their dependency on linear sequence order. This sequence order dependency makes them unsuitable for accurately detecting CP. Our approach, named plmCP, combines classical genetic principles with modern alignment techniques leveraging Protein Language Models to address these limitations. By integrating genetic knowledge, the plmCP method avoids the sequence order dependency, allowing for effective detection of circular permutations and contributing significantly to protein research and engineering by embracing structural flexibility.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 214-220"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004525","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Detection of circular permutations by Protein Language Models
Protein circular permutations are crucial for understanding protein evolution and functionality. Traditional detection methods face challenges: sequence-based approaches struggle with detecting distant homologs, while structure-based approaches are limited by the need for structure generation and often treat proteins as rigid bodies. Protein Language Model-based alignment tools have shown advantages in utilizing sequence information to overcome the challenges of detecting distant homologs without requiring structural input. However, many current Protein Language Model-based alignment methods, which rely on sequence alignment algorithms like the Smith-Waterman algorithm, face significant difficulties when dealing with circular permutation (CP) due to their dependency on linear sequence order. This sequence order dependency makes them unsuitable for accurately detecting CP. Our approach, named plmCP, combines classical genetic principles with modern alignment techniques leveraging Protein Language Models to address these limitations. By integrating genetic knowledge, the plmCP method avoids the sequence order dependency, allowing for effective detection of circular permutations and contributing significantly to protein research and engineering by embracing structural flexibility.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology