基于量子信息的CYP450小分子结合深度学习

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Shan Lu, Nicholas J Huls, Koushiki Basu, Tonglei Li
{"title":"基于量子信息的CYP450小分子结合深度学习","authors":"Shan Lu, Nicholas J Huls, Koushiki Basu, Tonglei Li","doi":"10.1021/acs.jcim.4c01735","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions. Still, conventional molecular descriptors focusing on the structural properties of drugs often overlook complex electronic interactions critical for accurate predictions. To address this, we implemented the Manifold Embedding of Molecular Surface (MEMS) approach, which retains the quantum mechanical characteristics of molecules. MEMS-generated electronic attributes were embedded and featurized for deep learning using the DeepSets architecture, where our models achieved high accuracy, particularly for cytochrome P450 enzyme 1A2 (CYP1A2), with F1 scores reaching up to 0.866. This study highlights the potential of integrating detailed electronic properties with deep learning to improve predictive models for drug-drug interactions, addressing the limitations of traditional molecular descriptors and machine-learning techniques.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"1188-1197"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.\",\"authors\":\"Shan Lu, Nicholas J Huls, Koushiki Basu, Tonglei Li\",\"doi\":\"10.1021/acs.jcim.4c01735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions. Still, conventional molecular descriptors focusing on the structural properties of drugs often overlook complex electronic interactions critical for accurate predictions. To address this, we implemented the Manifold Embedding of Molecular Surface (MEMS) approach, which retains the quantum mechanical characteristics of molecules. MEMS-generated electronic attributes were embedded and featurized for deep learning using the DeepSets architecture, where our models achieved high accuracy, particularly for cytochrome P450 enzyme 1A2 (CYP1A2), with F1 scores reaching up to 0.866. This study highlights the potential of integrating detailed electronic properties with deep learning to improve predictive models for drug-drug interactions, addressing the limitations of traditional molecular descriptors and machine-learning techniques.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"1188-1197\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01735\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01735","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

药物-药物相互作用可导致治疗效果降低或毒性增加,构成重大风险,特别是在多药治疗中,细胞色素P450在这种相互作用中起着不可或缺的作用。细胞色素P450负责大多数药物的代谢和解毒,代谢约90%的食品和药物管理局批准的药物,使早期发现潜在的药物-药物相互作用。多年来,计算机建模已成为预测药物-药物相互作用的宝贵工具。然而,传统的分子描述器专注于药物的结构特性,往往忽略了复杂的电子相互作用,这对准确预测至关重要。为了解决这个问题,我们实施了分子表面流形嵌入(MEMS)方法,该方法保留了分子的量子力学特性。使用DeepSets架构嵌入mems生成的电子属性并对其进行深度学习,我们的模型达到了很高的准确性,特别是对于细胞色素P450酶1A2 (CYP1A2), F1得分高达0.866。这项研究强调了将详细的电子特性与深度学习相结合的潜力,以改进药物-药物相互作用的预测模型,解决传统分子描述符和机器学习技术的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions. Still, conventional molecular descriptors focusing on the structural properties of drugs often overlook complex electronic interactions critical for accurate predictions. To address this, we implemented the Manifold Embedding of Molecular Surface (MEMS) approach, which retains the quantum mechanical characteristics of molecules. MEMS-generated electronic attributes were embedded and featurized for deep learning using the DeepSets architecture, where our models achieved high accuracy, particularly for cytochrome P450 enzyme 1A2 (CYP1A2), with F1 scores reaching up to 0.866. This study highlights the potential of integrating detailed electronic properties with deep learning to improve predictive models for drug-drug interactions, addressing the limitations of traditional molecular descriptors and machine-learning techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信