基于非关联流动规则下偏差应力不变式的各向异性变形硬化。第二部分:关联流动规则下与非二次屈服函数相结合的广义化

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Qi Hu, Jeong Whan Yoon, Jun Chen
{"title":"基于非关联流动规则下偏差应力不变式的各向异性变形硬化。第二部分:关联流动规则下与非二次屈服函数相结合的广义化","authors":"Qi Hu, Jeong Whan Yoon, Jun Chen","doi":"10.1016/j.ijplas.2025.104256","DOIUrl":null,"url":null,"abstract":"To control the curvature of yield loci, a generalized anisotropic distortional hardening ADH (G-ADH) model is established within the framework for Bauschinger effect prediction in ADH2022 (Hu and Yoon, 2022). Any yield criterion can be coupled with G-ADH. The convexity of G-ADH depends on the convexity of the coupled yield criterion. Under the proportional loadings, G-ADH still possesses the characteristics of the coupled yield criterion. In the present work, analytical Poly6-18p and Yld2000-2d yield criteria are coupled with G-ADH to predict the yield loci and R-values under the associated flow rule. Applying G-ADH to SPCC, EDDQ and DP780 materials, the result shows that G-ADH still processes the same ability as ADH2022 to predict the Bauschinger effect, permanent softening & strengthening behavior, and work-hardening stagnation & overshooting behavior. Applying G-ADH to AA6061-O and AA7075-T6, the result shows that G-ADH coupled with analytical Poly6-18p is capable of regulating the curvature of yield loci in pure shear and plane strain stress states, and accurately predicting the complex r-curve and uniaxial tension curve.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"38 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic distortional hardening based on deviatoric stress invariants under non-associated flow rule. Part-II: Generalization combined with non-quadratic yield function under associated flow rule\",\"authors\":\"Qi Hu, Jeong Whan Yoon, Jun Chen\",\"doi\":\"10.1016/j.ijplas.2025.104256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To control the curvature of yield loci, a generalized anisotropic distortional hardening ADH (G-ADH) model is established within the framework for Bauschinger effect prediction in ADH2022 (Hu and Yoon, 2022). Any yield criterion can be coupled with G-ADH. The convexity of G-ADH depends on the convexity of the coupled yield criterion. Under the proportional loadings, G-ADH still possesses the characteristics of the coupled yield criterion. In the present work, analytical Poly6-18p and Yld2000-2d yield criteria are coupled with G-ADH to predict the yield loci and R-values under the associated flow rule. Applying G-ADH to SPCC, EDDQ and DP780 materials, the result shows that G-ADH still processes the same ability as ADH2022 to predict the Bauschinger effect, permanent softening & strengthening behavior, and work-hardening stagnation & overshooting behavior. Applying G-ADH to AA6061-O and AA7075-T6, the result shows that G-ADH coupled with analytical Poly6-18p is capable of regulating the curvature of yield loci in pure shear and plane strain stress states, and accurately predicting the complex r-curve and uniaxial tension curve.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2025.104256\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic distortional hardening based on deviatoric stress invariants under non-associated flow rule. Part-II: Generalization combined with non-quadratic yield function under associated flow rule
To control the curvature of yield loci, a generalized anisotropic distortional hardening ADH (G-ADH) model is established within the framework for Bauschinger effect prediction in ADH2022 (Hu and Yoon, 2022). Any yield criterion can be coupled with G-ADH. The convexity of G-ADH depends on the convexity of the coupled yield criterion. Under the proportional loadings, G-ADH still possesses the characteristics of the coupled yield criterion. In the present work, analytical Poly6-18p and Yld2000-2d yield criteria are coupled with G-ADH to predict the yield loci and R-values under the associated flow rule. Applying G-ADH to SPCC, EDDQ and DP780 materials, the result shows that G-ADH still processes the same ability as ADH2022 to predict the Bauschinger effect, permanent softening & strengthening behavior, and work-hardening stagnation & overshooting behavior. Applying G-ADH to AA6061-O and AA7075-T6, the result shows that G-ADH coupled with analytical Poly6-18p is capable of regulating the curvature of yield loci in pure shear and plane strain stress states, and accurately predicting the complex r-curve and uniaxial tension curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信