CircTTC13通过靶向miR-513a-5p/SLC7A11轴抑制铁下垂,促进肝细胞癌中索拉非尼耐药

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ying Zhang, Ruiwei Yao, Mingyi Li, Chongkai Fang, Kunliang Feng, Xiuru Chen, Jinan Wang, Rui Luo, Hanqian Shi, Xinqiu Chen, Xilin Zhao, Hanlin Huang, Shuwei Liu, Bing Yin, Chong Zhong
{"title":"CircTTC13通过靶向miR-513a-5p/SLC7A11轴抑制铁下垂,促进肝细胞癌中索拉非尼耐药","authors":"Ying Zhang, Ruiwei Yao, Mingyi Li, Chongkai Fang, Kunliang Feng, Xiuru Chen, Jinan Wang, Rui Luo, Hanqian Shi, Xinqiu Chen, Xilin Zhao, Hanlin Huang, Shuwei Liu, Bing Yin, Chong Zhong","doi":"10.1186/s12943-024-02224-3","DOIUrl":null,"url":null,"abstract":"The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC. Through circRNA sequencing, we identified a novel hsa_circ_0000195 (circTTC13) that is overexpressed in HCC tissues. This overexpression is linked to higher tumor grade, more advanced tumor stage, decreased ferroptosis, and poorer overall survival. Overexpression of CircTTC13 in HCC cell lines and explant tumors was associated with increased proliferation rates, enhanced metastatic capacity, and resistance to sorafenib, while also inhibiting ferroptosis. Conversely, circTTC13 silencing reduced malignant characteristics and promoted ferroptosis. In silico analysis, luciferase assays, and fluorescence in situ hybridization collectively demonstrated that circTTC13 directly targets and reduces miR-513a-5p expression, which in turn leads to the upregulation of the negative ferroptosis regulator SLC7A11. Moreover, the inhibition of SLC7A11 mirrored the effect of circTTC13 knockdown, whereas ferroptosis inhibition mimicked the effect of circTTC13 overexpression. Both circTTC13 and SLC7A11 were highly expressed in drug-resistant HCC cells, and circTTC13 silencing induced ferroptosis and reversed sorafenib resistance in explant tumors. These findings identify circTTC13 as a critical driver of HCC progression and resistance to drug-induced ferroptosis via upregulation of SLC7A11. The cicTTC13/miR-513a-5p/SLC7A11 axis represents a potential therapeutic target for HCC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"84 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis\",\"authors\":\"Ying Zhang, Ruiwei Yao, Mingyi Li, Chongkai Fang, Kunliang Feng, Xiuru Chen, Jinan Wang, Rui Luo, Hanqian Shi, Xinqiu Chen, Xilin Zhao, Hanlin Huang, Shuwei Liu, Bing Yin, Chong Zhong\",\"doi\":\"10.1186/s12943-024-02224-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC. Through circRNA sequencing, we identified a novel hsa_circ_0000195 (circTTC13) that is overexpressed in HCC tissues. This overexpression is linked to higher tumor grade, more advanced tumor stage, decreased ferroptosis, and poorer overall survival. Overexpression of CircTTC13 in HCC cell lines and explant tumors was associated with increased proliferation rates, enhanced metastatic capacity, and resistance to sorafenib, while also inhibiting ferroptosis. Conversely, circTTC13 silencing reduced malignant characteristics and promoted ferroptosis. In silico analysis, luciferase assays, and fluorescence in situ hybridization collectively demonstrated that circTTC13 directly targets and reduces miR-513a-5p expression, which in turn leads to the upregulation of the negative ferroptosis regulator SLC7A11. Moreover, the inhibition of SLC7A11 mirrored the effect of circTTC13 knockdown, whereas ferroptosis inhibition mimicked the effect of circTTC13 overexpression. Both circTTC13 and SLC7A11 were highly expressed in drug-resistant HCC cells, and circTTC13 silencing induced ferroptosis and reversed sorafenib resistance in explant tumors. These findings identify circTTC13 as a critical driver of HCC progression and resistance to drug-induced ferroptosis via upregulation of SLC7A11. The cicTTC13/miR-513a-5p/SLC7A11 axis represents a potential therapeutic target for HCC.\",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-024-02224-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02224-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)的高死亡率主要是由于早期诊断的挑战和晚期耐药的发展。许多一线化疗药物诱导铁凋亡,这是一种依赖于亚铁介导的氧化应激的程序性细胞死亡形式,这表明耐药性和随后的肿瘤进展可能部分源于铁凋亡的减少。由于环状rna (circRNAs)已被证明可以影响肿瘤的发展,我们研究了特异性环状rna是否可以调节HCC中药物诱导的铁下垂。通过circRNA测序,我们鉴定出一种新的hsa_circ_0000195 (circTTC13)在HCC组织中过表达。这种过表达与更高的肿瘤分级、更晚期的肿瘤阶段、更低的铁下垂和更差的总生存率有关。CircTTC13在HCC细胞系和外体肿瘤中的过表达与增殖率增加、转移能力增强和对索拉非尼的耐药性相关,同时也抑制铁凋亡。相反,circTTC13沉默可减少恶性特征并促进铁下垂。硅分析、荧光素酶测定和荧光原位杂交共同表明,circTTC13直接靶向并降低miR-513a-5p的表达,这反过来导致铁下垂负调节因子SLC7A11的上调。此外,SLC7A11的抑制反映了circTTC13敲低的效果,而铁下垂抑制模仿了circTTC13过表达的效果。circTTC13和SLC7A11在耐药HCC细胞中高表达,circTTC13沉默诱导移植肿瘤铁下垂并逆转索拉非尼耐药。这些发现确定circTTC13是HCC进展的关键驱动因素,并通过上调SLC7A11对药物诱导的铁凋亡产生耐药性。cicTTC13/miR-513a-5p/SLC7A11轴代表了HCC的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis
The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC. Through circRNA sequencing, we identified a novel hsa_circ_0000195 (circTTC13) that is overexpressed in HCC tissues. This overexpression is linked to higher tumor grade, more advanced tumor stage, decreased ferroptosis, and poorer overall survival. Overexpression of CircTTC13 in HCC cell lines and explant tumors was associated with increased proliferation rates, enhanced metastatic capacity, and resistance to sorafenib, while also inhibiting ferroptosis. Conversely, circTTC13 silencing reduced malignant characteristics and promoted ferroptosis. In silico analysis, luciferase assays, and fluorescence in situ hybridization collectively demonstrated that circTTC13 directly targets and reduces miR-513a-5p expression, which in turn leads to the upregulation of the negative ferroptosis regulator SLC7A11. Moreover, the inhibition of SLC7A11 mirrored the effect of circTTC13 knockdown, whereas ferroptosis inhibition mimicked the effect of circTTC13 overexpression. Both circTTC13 and SLC7A11 were highly expressed in drug-resistant HCC cells, and circTTC13 silencing induced ferroptosis and reversed sorafenib resistance in explant tumors. These findings identify circTTC13 as a critical driver of HCC progression and resistance to drug-induced ferroptosis via upregulation of SLC7A11. The cicTTC13/miR-513a-5p/SLC7A11 axis represents a potential therapeutic target for HCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信