用常规免疫组织化学标志物预测her2阴性乳腺癌患者新辅助化疗后病理完全缓解

IF 7.4 1区 医学 Q1 Medicine
Lothar Häberle, Ramona Erber, Paul Gass, Alexander Hein, Melitta Niklos, Bernhard Volz, Carolin C Hack, Rüdiger Schulz-Wendtland, Hanna Huebner, Chloë Goossens, Matthias Christgen, Thilo Dörk, Tjoung-Won Park-Simon, Andreas Schneeweiss, Michael Untch, Valentina Nekljudova, Sibylle Loibl, Arndt Hartmann, Matthias W Beckmann, Peter A Fasching
{"title":"用常规免疫组织化学标志物预测her2阴性乳腺癌患者新辅助化疗后病理完全缓解","authors":"Lothar Häberle, Ramona Erber, Paul Gass, Alexander Hein, Melitta Niklos, Bernhard Volz, Carolin C Hack, Rüdiger Schulz-Wendtland, Hanna Huebner, Chloë Goossens, Matthias Christgen, Thilo Dörk, Tjoung-Won Park-Simon, Andreas Schneeweiss, Michael Untch, Valentina Nekljudova, Sibylle Loibl, Arndt Hartmann, Matthias W Beckmann, Peter A Fasching","doi":"10.1186/s13058-025-01960-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.</p><p><strong>Methods: </strong>Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan-Meier analyses. The model's utility was further evaluated in independent external validation cohorts.</p><p><strong>Results: </strong>273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70-0.81) and 0.83 (95% CI, 0.78-0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07-1.77) at 0% to 0.20 (0.11-0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis.</p><p><strong>Conclusions: </strong>A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"13"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers.\",\"authors\":\"Lothar Häberle, Ramona Erber, Paul Gass, Alexander Hein, Melitta Niklos, Bernhard Volz, Carolin C Hack, Rüdiger Schulz-Wendtland, Hanna Huebner, Chloë Goossens, Matthias Christgen, Thilo Dörk, Tjoung-Won Park-Simon, Andreas Schneeweiss, Michael Untch, Valentina Nekljudova, Sibylle Loibl, Arndt Hartmann, Matthias W Beckmann, Peter A Fasching\",\"doi\":\"10.1186/s13058-025-01960-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.</p><p><strong>Methods: </strong>Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan-Meier analyses. The model's utility was further evaluated in independent external validation cohorts.</p><p><strong>Results: </strong>273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70-0.81) and 0.83 (95% CI, 0.78-0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07-1.77) at 0% to 0.20 (0.11-0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis.</p><p><strong>Conclusions: </strong>A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.</p>\",\"PeriodicalId\":49227,\"journal\":{\"name\":\"Breast Cancer Research\",\"volume\":\"27 1\",\"pages\":\"13\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-025-01960-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01960-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:病理完全缓解(pCR)是乳腺癌(BC)患者新辅助化疗后预后的替代指标。基于活检中可用的临床信息,特别是免疫组织化学(IHC)标记物的个体化pCR预测,可能有助于确定可能从术前化疗中受益的患者。方法:利用2002年至2020年接受新辅助化疗的her2阴性BC患者(n = 1166)的数据,建立多变量预测模型,估计pCR (pCR- probb)的概率。使用交叉验证确定的最精确模型在在线计算器和nomogram中实现。采用Cox回归和Kaplan-Meier分析研究pcr - proba、预后IHC3远处复发和无病生存之间的关系。该模型的效用在独立的外部验证队列中进一步评估。结果:273例(23.4%)获得pCR。最精确的模型曲线下面积(AUC)为0.84,灵敏度为0.82,特异性为0.71。外部验证的auc在0.75 (95% CI, 0.70-0.81)和0.83 (95% CI, 0.78-0.87)之间。pCR- probb越高,pCR状态(存在/不存在)对预后的影响越大:风险比从0%时的0.55(95%中心范围,0.07-1.77)降至50% pCR- probb时的0.20(0.11-0.31)。结合pCR-prob和IHC3评分,进一步提高了无病生存预后的准确性。结论:建立了新辅助治疗决策的pCR预测模型。结合pCR和复发预测,不仅可以识别新辅助化疗获益最多的患者,也可以识别预后非常不利的患者,需要考虑其他治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of pathological complete response after neoadjuvant chemotherapy for HER2-negative breast cancer patients with routine immunohistochemical markers.

Background: Pathological complete response (pCR) is an established surrogate marker for prognosis in patients with breast cancer (BC) after neoadjuvant chemotherapy. Individualized pCR prediction based on clinical information available at biopsy, particularly immunohistochemical (IHC) markers, may help identify patients who could benefit from preoperative chemotherapy.

Methods: Data from patients with HER2-negative BC who underwent neoadjuvant chemotherapy from 2002 to 2020 (n = 1166) were used to develop multivariable prediction models to estimate the probability of pCR (pCR-prob). The most precise model identified using cross-validation was implemented in an online calculator and a nomogram. Associations among pCR-prob, prognostic IHC3 distant recurrence and disease-free survival were studied using Cox regression and Kaplan-Meier analyses. The model's utility was further evaluated in independent external validation cohorts.

Results: 273 patients (23.4%) achieved a pCR. The most precise model had across-validated area under the curve (AUC) of 0.84, sensitivity of 0.82, and specificity of 0.71. External validation yielded AUCs between 0.75 (95% CI, 0.70-0.81) and 0.83 (95% CI, 0.78-0.87). The higher the pCR-prob, the greater the prognostic impact of pCR status (presence/absence): hazard ratios decreased from 0.55 (95% central range, 0.07-1.77) at 0% to 0.20 (0.11-0.31) at 50% pCR-prob. Combining pCR-prob and IHC3 score further improved the precision of disease-free survival prognosis.

Conclusions: A pCR prediction model for neoadjuvant therapy decision-making was established. Combining pCR and recurrence prediction allows identification of not only patients who benefit most from neoadjuvant chemotherapy, but also patients with a very unfavorable prognosis for whom alternative treatment strategies should be considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信