Nelly Estefanie Garduno-Rapp, Simone Herzberg, Henry H Ong, Cindy Kao, Christoph U Lehmann, Srushti Gangireddy, Nitin B Jain, Ayush Giri
{"title":"应用外部开发的算法从电子健康记录数据中识别研究案例和控制:失败与成功。","authors":"Nelly Estefanie Garduno-Rapp, Simone Herzberg, Henry H Ong, Cindy Kao, Christoph U Lehmann, Srushti Gangireddy, Nitin B Jain, Ayush Giri","doi":"10.1055/a-2524-5216","DOIUrl":null,"url":null,"abstract":"<p><p>The use of electronic health records (EHRs) in research demands robust and interoperable systems. By linking biorepositories to EHR algorithms, researchers can efficiently identify cases and controls for large observational studies (e.g., genome-wide association studies). This is critical for ensuring efficient and cost-effective research. However, the lack of standardized metadata and algorithms across different EHRs complicates their sharing and application. Our study presents an example of a successful implementation and validation process.This study aimed to implement and validate a rule-based algorithm from a tertiary medical center in Tennessee to classify cases and controls from a research study on rotator cuff tear (RCT) nested within a tertiary medical center in North Texas and to assess the algorithm's performance.We applied a phenotypic algorithm (designed and validated in a tertiary medical center in Tennessee) using EHR data from 492 patients enrolled in a case-control study recruited from a tertiary medical center in North Texas. The algorithm leveraged the international classification of diseases and current procedural terminology codes to identify case and control status for degenerative RCT. A manual review was conducted to compare the algorithm's classification with a previously recorded gold standard documented by clinical researchers.Initially the algorithm identified 398 (80.9%) patients correctly as cases or controls. After fine-tuning and correcting errors in our gold standard dataset, we calculated a sensitivity of 0.94 and a specificity of 0.76. The implementation of the algorithm presented challenges due to the variability in coding practices between medical centers. To enhance performance, we refined the algorithm's data dictionary by incorporating additional codes. The process highlighted the need for meticulous code verification and standardization in multi-center studies.Sharing case-control algorithms boosts EHR research. Our rule-based algorithm improved multi-site patient identification and revealed 12 data entry errors, helping validate our results.</p>","PeriodicalId":48956,"journal":{"name":"Applied Clinical Informatics","volume":" ","pages":"314-326"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945218/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of an Externally Developed Algorithm to Identify Research Cases and Controls from EHR Data: Trials and Triumphs.\",\"authors\":\"Nelly Estefanie Garduno-Rapp, Simone Herzberg, Henry H Ong, Cindy Kao, Christoph U Lehmann, Srushti Gangireddy, Nitin B Jain, Ayush Giri\",\"doi\":\"10.1055/a-2524-5216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of electronic health records (EHRs) in research demands robust and interoperable systems. By linking biorepositories to EHR algorithms, researchers can efficiently identify cases and controls for large observational studies (e.g., genome-wide association studies). This is critical for ensuring efficient and cost-effective research. However, the lack of standardized metadata and algorithms across different EHRs complicates their sharing and application. Our study presents an example of a successful implementation and validation process.This study aimed to implement and validate a rule-based algorithm from a tertiary medical center in Tennessee to classify cases and controls from a research study on rotator cuff tear (RCT) nested within a tertiary medical center in North Texas and to assess the algorithm's performance.We applied a phenotypic algorithm (designed and validated in a tertiary medical center in Tennessee) using EHR data from 492 patients enrolled in a case-control study recruited from a tertiary medical center in North Texas. The algorithm leveraged the international classification of diseases and current procedural terminology codes to identify case and control status for degenerative RCT. A manual review was conducted to compare the algorithm's classification with a previously recorded gold standard documented by clinical researchers.Initially the algorithm identified 398 (80.9%) patients correctly as cases or controls. After fine-tuning and correcting errors in our gold standard dataset, we calculated a sensitivity of 0.94 and a specificity of 0.76. The implementation of the algorithm presented challenges due to the variability in coding practices between medical centers. To enhance performance, we refined the algorithm's data dictionary by incorporating additional codes. The process highlighted the need for meticulous code verification and standardization in multi-center studies.Sharing case-control algorithms boosts EHR research. Our rule-based algorithm improved multi-site patient identification and revealed 12 data entry errors, helping validate our results.</p>\",\"PeriodicalId\":48956,\"journal\":{\"name\":\"Applied Clinical Informatics\",\"volume\":\" \",\"pages\":\"314-326\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clinical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2524-5216\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2524-5216","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Application of an Externally Developed Algorithm to Identify Research Cases and Controls from EHR Data: Trials and Triumphs.
The use of electronic health records (EHRs) in research demands robust and interoperable systems. By linking biorepositories to EHR algorithms, researchers can efficiently identify cases and controls for large observational studies (e.g., genome-wide association studies). This is critical for ensuring efficient and cost-effective research. However, the lack of standardized metadata and algorithms across different EHRs complicates their sharing and application. Our study presents an example of a successful implementation and validation process.This study aimed to implement and validate a rule-based algorithm from a tertiary medical center in Tennessee to classify cases and controls from a research study on rotator cuff tear (RCT) nested within a tertiary medical center in North Texas and to assess the algorithm's performance.We applied a phenotypic algorithm (designed and validated in a tertiary medical center in Tennessee) using EHR data from 492 patients enrolled in a case-control study recruited from a tertiary medical center in North Texas. The algorithm leveraged the international classification of diseases and current procedural terminology codes to identify case and control status for degenerative RCT. A manual review was conducted to compare the algorithm's classification with a previously recorded gold standard documented by clinical researchers.Initially the algorithm identified 398 (80.9%) patients correctly as cases or controls. After fine-tuning and correcting errors in our gold standard dataset, we calculated a sensitivity of 0.94 and a specificity of 0.76. The implementation of the algorithm presented challenges due to the variability in coding practices between medical centers. To enhance performance, we refined the algorithm's data dictionary by incorporating additional codes. The process highlighted the need for meticulous code verification and standardization in multi-center studies.Sharing case-control algorithms boosts EHR research. Our rule-based algorithm improved multi-site patient identification and revealed 12 data entry errors, helping validate our results.
期刊介绍:
ACI is the third Schattauer journal dealing with biomedical and health informatics. It perfectly complements our other journals Öffnet internen Link im aktuellen FensterMethods of Information in Medicine and the Öffnet internen Link im aktuellen FensterYearbook of Medical Informatics. The Yearbook of Medical Informatics being the “Milestone” or state-of-the-art journal and Methods of Information in Medicine being the “Science and Research” journal of IMIA, ACI intends to be the “Practical” journal of IMIA.