Lauma Freimane , Agnija Kivrāne , Viktorija Ulanova , Anda Vīksna , Eduards Sevostjanovs , Solveiga Grīnberga , Andra Cīrule , Alvils Krams , Renāte Ranka
{"title":"Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis","authors":"Lauma Freimane , Agnija Kivrāne , Viktorija Ulanova , Anda Vīksna , Eduards Sevostjanovs , Solveiga Grīnberga , Andra Cīrule , Alvils Krams , Renāte Ranka","doi":"10.1016/j.tube.2025.102611","DOIUrl":null,"url":null,"abstract":"<div><div>Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations.</div><div>The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point. Multivariate linear regression revealed that the dynamics of ccf-mtDNA CN was influenced by patients’ age, ethambutol pharmacokinetics, and body-mass index (BMI); ethambutol exposure emerged as the most significant factor. Very low ccf-nDNA CN in all three time points with little variation was observed; none factors were strongly associated with ccf-nDNA.</div><div>In conclusion, our study revealed the effect of anti-TB chemotherapy, age and BMI on acute changes in circulating ccf-mtDNA CN in blood plasma and highlighted the systemic, mitochondria-related effects of ethambutol in patients with TB. Further studies with larger cohorts are needed to understand the biological relevance of ccf-DNA in patients with TB and to validate its application in TB treatment monitoring.</div></div>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"151 ","pages":"Article 102611"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147297922500006X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis
Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations.
The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point. Multivariate linear regression revealed that the dynamics of ccf-mtDNA CN was influenced by patients’ age, ethambutol pharmacokinetics, and body-mass index (BMI); ethambutol exposure emerged as the most significant factor. Very low ccf-nDNA CN in all three time points with little variation was observed; none factors were strongly associated with ccf-nDNA.
In conclusion, our study revealed the effect of anti-TB chemotherapy, age and BMI on acute changes in circulating ccf-mtDNA CN in blood plasma and highlighted the systemic, mitochondria-related effects of ethambutol in patients with TB. Further studies with larger cohorts are needed to understand the biological relevance of ccf-DNA in patients with TB and to validate its application in TB treatment monitoring.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.