利用生存机器学习识别阿尔茨海默病的蛋白质组预后标记:弗雷明汉心脏研究

IF 4.3 Q2 BUSINESS
Yuanming Leng, Huitong Ding, Ting Fang Alvin Ang, Rhoda Au, P Murali Doraiswamy, Chunyu Liu
{"title":"利用生存机器学习识别阿尔茨海默病的蛋白质组预后标记:弗雷明汉心脏研究","authors":"Yuanming Leng, Huitong Ding, Ting Fang Alvin Ang, Rhoda Au, P Murali Doraiswamy, Chunyu Liu","doi":"10.1016/j.tjpad.2024.100021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.</p><p><strong>Methods: </strong>Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9 % women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in a separate group of 430 participants younger than 55 years (mean age 46, 56.7 % women).</p><p><strong>Results: </strong>Over a mean follow-up of 20 years, 132 (15.4 %) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4 + status, regression models identified 309 proteins (P ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4 + status across 15-25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in the 339 participants (beta = -0.061, P = 0.046), 430 participants (beta = -0.060, P = 0.018), and the pooled 769 samples (beta = -0.058, P = 0.003).</p><p><strong>Conclusion: </strong>These findings highlight the utility of machine learning method in identifying proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.</p>","PeriodicalId":22711,"journal":{"name":"The Journal of Prevention of Alzheimer's Disease","volume":"12 2","pages":"100021"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.\",\"authors\":\"Yuanming Leng, Huitong Ding, Ting Fang Alvin Ang, Rhoda Au, P Murali Doraiswamy, Chunyu Liu\",\"doi\":\"10.1016/j.tjpad.2024.100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.</p><p><strong>Methods: </strong>Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9 % women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in a separate group of 430 participants younger than 55 years (mean age 46, 56.7 % women).</p><p><strong>Results: </strong>Over a mean follow-up of 20 years, 132 (15.4 %) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4 + status, regression models identified 309 proteins (P ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4 + status across 15-25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in the 339 participants (beta = -0.061, P = 0.046), 430 participants (beta = -0.060, P = 0.018), and the pooled 769 samples (beta = -0.058, P = 0.003).</p><p><strong>Conclusion: </strong>These findings highlight the utility of machine learning method in identifying proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.</p>\",\"PeriodicalId\":22711,\"journal\":{\"name\":\"The Journal of Prevention of Alzheimer's Disease\",\"volume\":\"12 2\",\"pages\":\"100021\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Prevention of Alzheimer's Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tjpad.2024.100021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Prevention of Alzheimer's Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tjpad.2024.100021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.

Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.

Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9 % women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in a separate group of 430 participants younger than 55 years (mean age 46, 56.7 % women).

Results: Over a mean follow-up of 20 years, 132 (15.4 %) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4 + status, regression models identified 309 proteins (P ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4 + status across 15-25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in the 339 participants (beta = -0.061, P = 0.046), 430 participants (beta = -0.060, P = 0.018), and the pooled 769 samples (beta = -0.058, P = 0.003).

Conclusion: These findings highlight the utility of machine learning method in identifying proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Prevention of Alzheimer's Disease
The Journal of Prevention of Alzheimer's Disease Medicine-Psychiatry and Mental Health
CiteScore
9.20
自引率
0.00%
发文量
0
期刊介绍: The JPAD Journal of Prevention of Alzheimer’Disease will publish reviews, original research articles and short reports to improve our knowledge in the field of Alzheimer prevention including: neurosciences, biomarkers, imaging, epidemiology, public health, physical cognitive exercise, nutrition, risk and protective factors, drug development, trials design, and heath economic outcomes.JPAD will publish also the meeting abstracts from Clinical Trial on Alzheimer Disease (CTAD) and will be distributed both in paper and online version worldwide.We hope that JPAD with your contribution will play a role in the development of Alzheimer prevention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信