基于深度学习和临床生理知识的光容积脉搏波信号的两分支血压估计框架。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Minghong Qiao, Li Chang, Zili Zhou, Sam Cheng Jun, Ling He, Jing Zhang
{"title":"基于深度学习和临床生理知识的光容积脉搏波信号的两分支血压估计框架。","authors":"Minghong Qiao, Li Chang, Zili Zhou, Sam Cheng Jun, Ling He, Jing Zhang","doi":"10.1088/1361-6579/adae50","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>This paper presents a novel dual-branch framework for estimating blood pressure (BP) using photoplethysmography (PPG) signals. The method combines deep learning with clinical prior knowledge and models different time periods (morning, afternoon, and evening) to achieve precise, cuffless BP estimation.<i>Approach.</i>Preprocessed single-channel PPG signals are input into two feature extraction branches. The first branch converts PPG dimensions to 2D and uses pre-trained Mobile Vision Transformer-v2 (MobileViTv2) and Visual Geometry Group19 (Vgg19) backbones to extract deep PPG features based on the different mechanisms of systolic blood pressure (SBP) and diastolic blood pressure (DBP) formation. The second branch calculates multi-dimensional feature parameters based on the relationship between PPG waveforms and factors affecting BP. We fuse the features from both branches and consider diurnal BP variations, using AutoML strategy to construct specific SBP and DBP estimation models for the different periods. The algorithm was developed on the human resting state PPG and BP dataset (HRSD) and validated on the MIMIC-IV dataset for generalization performance.<i>Main results.</i>The mean absolute error (MAE) for BP estimation is 6.42 mmHg SBP and 4.96 mmHg DBP in the morning, 4.84 mmHg (SBP) and 3.73 mmHg (DBP) in the afternoon, and 2.65 mmHg (SBP) and 2.56 mmHg (DBP) in the evening. Performance on the MIMIC-IV database was 4.34 mmHg (SBP) and 3.11 mmHg (DBP). The method meets the standards of the Association for the Advancement of Medical Instrumentation and achieves Grade A of the British Hypertension Society (BHS) standards.<i>Significance</i>. This indicates that it is an accurate and reliable non-invasive BP monitoring technology, applicable for continuous health monitoring and cardiovascular disease prevention.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-branch framework for blood pressure estimation using photoplethysmography signals with deep learning and clinical prior physiological knowledge.\",\"authors\":\"Minghong Qiao, Li Chang, Zili Zhou, Sam Cheng Jun, Ling He, Jing Zhang\",\"doi\":\"10.1088/1361-6579/adae50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>This paper presents a novel dual-branch framework for estimating blood pressure (BP) using photoplethysmography (PPG) signals. The method combines deep learning with clinical prior knowledge and models different time periods (morning, afternoon, and evening) to achieve precise, cuffless BP estimation.<i>Approach.</i>Preprocessed single-channel PPG signals are input into two feature extraction branches. The first branch converts PPG dimensions to 2D and uses pre-trained Mobile Vision Transformer-v2 (MobileViTv2) and Visual Geometry Group19 (Vgg19) backbones to extract deep PPG features based on the different mechanisms of systolic blood pressure (SBP) and diastolic blood pressure (DBP) formation. The second branch calculates multi-dimensional feature parameters based on the relationship between PPG waveforms and factors affecting BP. We fuse the features from both branches and consider diurnal BP variations, using AutoML strategy to construct specific SBP and DBP estimation models for the different periods. The algorithm was developed on the human resting state PPG and BP dataset (HRSD) and validated on the MIMIC-IV dataset for generalization performance.<i>Main results.</i>The mean absolute error (MAE) for BP estimation is 6.42 mmHg SBP and 4.96 mmHg DBP in the morning, 4.84 mmHg (SBP) and 3.73 mmHg (DBP) in the afternoon, and 2.65 mmHg (SBP) and 2.56 mmHg (DBP) in the evening. Performance on the MIMIC-IV database was 4.34 mmHg (SBP) and 3.11 mmHg (DBP). The method meets the standards of the Association for the Advancement of Medical Instrumentation and achieves Grade A of the British Hypertension Society (BHS) standards.<i>Significance</i>. This indicates that it is an accurate and reliable non-invasive BP monitoring technology, applicable for continuous health monitoring and cardiovascular disease prevention.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/adae50\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adae50","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:提出一种利用光容积描记图(PPG)信号估计血压(BP)的新型双分支框架。该方法将深度学习与临床先验知识相结合,并对不同时间段(上午、下午和晚上)进行建模,以实现精确、无害化的BP估计。方法:将预处理后的单通道PPG信号输入到两个特征提取支路。第一个分支将PPG维度转换为2D,并使用预训练的MobileViTv2和Vgg19主干,根据不同的收缩压和舒张压形成机制提取深层PPG特征。第二分支基于PPG波形与BP影响因素之间的关系计算多维特征参数。我们融合了这两个分支的特征,并考虑了BP的日变化,使用AutoML策略构建了不同时期的个性化收缩压和舒张压估计模型。在HRSD数据集上开发了该算法,并在MIMIC-IV数据集上验证了该算法的泛化性能。主要结果:血压估计的平均绝对误差(MAE)上午为6.42 mmHg (SBP)和4.96 mmHg (DBP),下午为4.84 mmHg (SBP)和3.73 mmHg (DBP),晚上为2.65 mmHg (SBP)和2.56 mmHg (DBP)。MIMIC-IV数据库的性能分别为4.34 mmHg (SBP)和3.11 mmHg (DBP)。该方法符合美国医疗器械进步协会(AAMI)的标准,达到英国高血压协会(BHS)的A级标准。意义:这表明它是一种准确可靠的无创血压监测技术,适用于连续健康监测和心血管疾病的预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-branch framework for blood pressure estimation using photoplethysmography signals with deep learning and clinical prior physiological knowledge.

Objective.This paper presents a novel dual-branch framework for estimating blood pressure (BP) using photoplethysmography (PPG) signals. The method combines deep learning with clinical prior knowledge and models different time periods (morning, afternoon, and evening) to achieve precise, cuffless BP estimation.Approach.Preprocessed single-channel PPG signals are input into two feature extraction branches. The first branch converts PPG dimensions to 2D and uses pre-trained Mobile Vision Transformer-v2 (MobileViTv2) and Visual Geometry Group19 (Vgg19) backbones to extract deep PPG features based on the different mechanisms of systolic blood pressure (SBP) and diastolic blood pressure (DBP) formation. The second branch calculates multi-dimensional feature parameters based on the relationship between PPG waveforms and factors affecting BP. We fuse the features from both branches and consider diurnal BP variations, using AutoML strategy to construct specific SBP and DBP estimation models for the different periods. The algorithm was developed on the human resting state PPG and BP dataset (HRSD) and validated on the MIMIC-IV dataset for generalization performance.Main results.The mean absolute error (MAE) for BP estimation is 6.42 mmHg SBP and 4.96 mmHg DBP in the morning, 4.84 mmHg (SBP) and 3.73 mmHg (DBP) in the afternoon, and 2.65 mmHg (SBP) and 2.56 mmHg (DBP) in the evening. Performance on the MIMIC-IV database was 4.34 mmHg (SBP) and 3.11 mmHg (DBP). The method meets the standards of the Association for the Advancement of Medical Instrumentation and achieves Grade A of the British Hypertension Society (BHS) standards.Significance. This indicates that it is an accurate and reliable non-invasive BP monitoring technology, applicable for continuous health monitoring and cardiovascular disease prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信