Jovanna Vanessa Ramos Angulo, Juliana Fernández Valenzuela, Sofía Isabel Freire-Bernal, Victoria Eugenia Niño-Castaño, Jorge Enrique Rodríguez Paez, Rosa Amalia Dueñas-Cuellar
{"title":"氧化锌纳米颗粒在人类外周血单核细胞中的细胞毒性和遗传毒性。","authors":"Jovanna Vanessa Ramos Angulo, Juliana Fernández Valenzuela, Sofía Isabel Freire-Bernal, Victoria Eugenia Niño-Castaño, Jorge Enrique Rodríguez Paez, Rosa Amalia Dueñas-Cuellar","doi":"10.1016/j.mrgentox.2024.503838","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro. ZnO-NPs caused significant reduction in cell viability and LDH release, indicating damage to cell membranes. Late apoptosis was significant and necrosis was significant at higher concentrations tested. ZnO-NPs did not induce micronucleus formation.</p>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"901 ","pages":"503838"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells.\",\"authors\":\"Jovanna Vanessa Ramos Angulo, Juliana Fernández Valenzuela, Sofía Isabel Freire-Bernal, Victoria Eugenia Niño-Castaño, Jorge Enrique Rodríguez Paez, Rosa Amalia Dueñas-Cuellar\",\"doi\":\"10.1016/j.mrgentox.2024.503838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro. ZnO-NPs caused significant reduction in cell viability and LDH release, indicating damage to cell membranes. Late apoptosis was significant and necrosis was significant at higher concentrations tested. ZnO-NPs did not induce micronucleus formation.</p>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"901 \",\"pages\":\"503838\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mrgentox.2024.503838\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mrgentox.2024.503838","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells.
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro. ZnO-NPs caused significant reduction in cell viability and LDH release, indicating damage to cell membranes. Late apoptosis was significant and necrosis was significant at higher concentrations tested. ZnO-NPs did not induce micronucleus formation.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.