使用多te ASL MRI测量咖啡因摄入后血脑屏障水交换的新生理学见解。

IF 2.5 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Amnah Mahroo, Mareike Alicja Buck, Simon Konstandin, Jörn Huber, Daniel Christopher Hoinkiss, Jochen Hirsch, Matthias Günther
{"title":"使用多te ASL MRI测量咖啡因摄入后血脑屏障水交换的新生理学见解。","authors":"Amnah Mahroo, Mareike Alicja Buck, Simon Konstandin, Jörn Huber, Daniel Christopher Hoinkiss, Jochen Hirsch, Matthias Günther","doi":"10.1007/s10334-024-01219-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored. This study investigated the water exchange via the BBB in a perturbed physiological condition caused by caffeine ingestion, using the multiple echo time (multi-TE) arterial spin labeling (ASL) technique.</p><p><strong>Material and methods: </strong>Ten healthy, regular coffee drinkers (age = 31 ± 9 years, 3 females) were scanned to acquire five measurements before and six measurements after caffeine ingestion. Data were analyzed with a multi-TE two-compartment model to estimate exchange time (Tex), serving as a proxy for BBB permeability to water. Additionally, cerebral blood flow (CBF), arterial transit time (ATT), and intravoxel transit time (ITT) were investigated.</p><p><strong>Results: </strong>Following caffeine intake, mean gray matter CBF showed a significant time-dependent decrease (P < 0.01). In contrast, Tex, ATT, and ITT did not exhibit significant time-dependent change. However, a non-significant decreasing trend was observed for Tex and ITT, respectively, while ATT showed an increasing trend over time.</p><p><strong>Discussion: </strong>The observed decreasing trend in Tex after caffeine ingestion suggests a potential increase in water flux across the BBB, which may represent a compensatory mechanism to maintain brain homeostasis in response to the caffeine-induced reduction in CBF. Further studies with larger sample sizes are needed to validate and expand upon these findings.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"207-219"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913962/pdf/","citationCount":"0","resultStr":"{\"title\":\"New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.\",\"authors\":\"Amnah Mahroo, Mareike Alicja Buck, Simon Konstandin, Jörn Huber, Daniel Christopher Hoinkiss, Jochen Hirsch, Matthias Günther\",\"doi\":\"10.1007/s10334-024-01219-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored. This study investigated the water exchange via the BBB in a perturbed physiological condition caused by caffeine ingestion, using the multiple echo time (multi-TE) arterial spin labeling (ASL) technique.</p><p><strong>Material and methods: </strong>Ten healthy, regular coffee drinkers (age = 31 ± 9 years, 3 females) were scanned to acquire five measurements before and six measurements after caffeine ingestion. Data were analyzed with a multi-TE two-compartment model to estimate exchange time (Tex), serving as a proxy for BBB permeability to water. Additionally, cerebral blood flow (CBF), arterial transit time (ATT), and intravoxel transit time (ITT) were investigated.</p><p><strong>Results: </strong>Following caffeine intake, mean gray matter CBF showed a significant time-dependent decrease (P < 0.01). In contrast, Tex, ATT, and ITT did not exhibit significant time-dependent change. However, a non-significant decreasing trend was observed for Tex and ITT, respectively, while ATT showed an increasing trend over time.</p><p><strong>Discussion: </strong>The observed decreasing trend in Tex after caffeine ingestion suggests a potential increase in water flux across the BBB, which may represent a compensatory mechanism to maintain brain homeostasis in response to the caffeine-induced reduction in CBF. Further studies with larger sample sizes are needed to validate and expand upon these findings.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"207-219\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01219-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01219-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:咖啡因,一种已知的神经兴奋剂和腺苷拮抗剂,通过减少脑血流量影响脑生理。它与腺苷受体相互作用,诱导血管收缩,潜在地破坏大脑内稳态。然而,咖啡因对血脑屏障(BBB)对水的渗透性的影响仍未得到充分研究。本研究采用多回声时间(multi-TE)动脉自旋标记(ASL)技术,研究了咖啡因摄入引起的紊乱生理状态下血脑屏障的水交换。材料和方法:对10名健康、经常喝咖啡的人(年龄= 31±9岁,3名女性)进行扫描,获得摄入咖啡因前的5项测量和摄入咖啡因后的6项测量。使用多te双室模型对数据进行分析,以估计交换时间(Tex),作为血脑屏障对水渗透率的代理。此外,研究脑血流(CBF)、动脉传递时间(ATT)和体内传递时间(ITT)。结果:咖啡因摄入后,平均脑灰质CBF表现出明显的时间依赖性下降(P讨论:咖啡因摄入后观察到的Tex下降趋势表明,血脑屏障的水通量可能增加,这可能代表了一种补偿机制,以维持脑内稳态,以应对咖啡因诱导的CBF减少。需要更大样本量的进一步研究来验证和扩展这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.

New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.

New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.

New physiological insights using multi-TE ASL MRI measuring blood-brain barrier water exchange after caffeine intake.

Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored. This study investigated the water exchange via the BBB in a perturbed physiological condition caused by caffeine ingestion, using the multiple echo time (multi-TE) arterial spin labeling (ASL) technique.

Material and methods: Ten healthy, regular coffee drinkers (age = 31 ± 9 years, 3 females) were scanned to acquire five measurements before and six measurements after caffeine ingestion. Data were analyzed with a multi-TE two-compartment model to estimate exchange time (Tex), serving as a proxy for BBB permeability to water. Additionally, cerebral blood flow (CBF), arterial transit time (ATT), and intravoxel transit time (ITT) were investigated.

Results: Following caffeine intake, mean gray matter CBF showed a significant time-dependent decrease (P < 0.01). In contrast, Tex, ATT, and ITT did not exhibit significant time-dependent change. However, a non-significant decreasing trend was observed for Tex and ITT, respectively, while ATT showed an increasing trend over time.

Discussion: The observed decreasing trend in Tex after caffeine ingestion suggests a potential increase in water flux across the BBB, which may represent a compensatory mechanism to maintain brain homeostasis in response to the caffeine-induced reduction in CBF. Further studies with larger sample sizes are needed to validate and expand upon these findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信