{"title":"快速 iPSC 衍生神经肌肉接头模型揭示了肌萎缩性脊髓侧索硬化症细胞病变中的运动神经元优势。","authors":"Hsiao-Chien Ting, Yun-Ting Guo, Hong-Lin Su, Yu-Shuan Chen, Shinn-Zong Lin, Horng-Jyh Harn, Chia-Yu Chang","doi":"10.1038/s41420-025-02302-5","DOIUrl":null,"url":null,"abstract":"<p><p>The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"23"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid iPSC-derived neuromuscular junction model uncovers motor neuron dominance in amyotrophic lateral sclerosis cytopathy.\",\"authors\":\"Hsiao-Chien Ting, Yun-Ting Guo, Hong-Lin Su, Yu-Shuan Chen, Shinn-Zong Lin, Horng-Jyh Harn, Chia-Yu Chang\",\"doi\":\"10.1038/s41420-025-02302-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"23\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02302-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02302-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Rapid iPSC-derived neuromuscular junction model uncovers motor neuron dominance in amyotrophic lateral sclerosis cytopathy.
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.