eIF4A1通过促进transgelin/p53核易位加重小鼠心肌缺血-再灌注损伤。

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Acta Pharmacologica Sinica Pub Date : 2025-05-01 Epub Date: 2025-01-24 DOI:10.1038/s41401-024-01467-6
Dan-Yang Li, Xiao-Xi Hu, Zhong-Rui Tian, Qi-Wen Ning, Jiang-Qi Liu, Ying Yue, Wei Yuan, Bo Meng, Jia-Liang Li, Yang Zhang, Zhen-Wei Pan, Yu-Ting Zhuang, Yan-Jie Lu
{"title":"eIF4A1通过促进transgelin/p53核易位加重小鼠心肌缺血-再灌注损伤。","authors":"Dan-Yang Li, Xiao-Xi Hu, Zhong-Rui Tian, Qi-Wen Ning, Jiang-Qi Liu, Ying Yue, Wei Yuan, Bo Meng, Jia-Liang Li, Yang Zhang, Zhen-Wei Pan, Yu-Ting Zhuang, Yan-Jie Lu","doi":"10.1038/s41401-024-01467-6","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with H<sub>2</sub>O<sub>2</sub> (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study. We showed that the expression levels of eIF4A1 were significantly increased in I/R-treated myocardium and in H<sub>2</sub>O<sub>2</sub>- or H/R-treated NMVCs. In NMVCs, eIF4A1 overexpression drastically enhanced LDH level, caspase 3 activity, and cell apoptosis. eIF4A1 overexpression also significantly reduced anti-apoptotic protein Bcl2 and elevated pro-apoptotic protein Bax expression, whereas eIF4A1 deficiency produced the opposite responses. Importantly, cardiomyocyte-specific eIF4A1 knockout attenuated cardiomyocyte apoptosis, reduced infarct area, and improved cardiac function in myocardial I/R mice. We demonstrated that eIF4A1 directly bound to transgelin (Tagln) to prevent its ubiquitination degradation and subsequent up-regulation of p53, and then promoted nuclear translocation of Tagln and p53. Nuclear localization of Tagln and p53 was increased in H<sub>2</sub>O<sub>2</sub>-treated NMVCs. Silencing Tagln reversed the pro-apoptotic effects of eIF4A1. Noticeably, eIF4A1 exerted the similar effects in AC16 human cardiomyocytes. In conclusion, eIF4A1 is a detrimental factor in myocardial I/R injury via promoting expression and nuclear translocation of Tagln and p53 and might be a potential target for myocardial I/R injury. This study highlights a novel biological role of eIF4A1 by interacting with non-translational-related factor Tagln in myocardial I/R injury.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1236-1249"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032080/pdf/","citationCount":"0","resultStr":"{\"title\":\"eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.\",\"authors\":\"Dan-Yang Li, Xiao-Xi Hu, Zhong-Rui Tian, Qi-Wen Ning, Jiang-Qi Liu, Ying Yue, Wei Yuan, Bo Meng, Jia-Liang Li, Yang Zhang, Zhen-Wei Pan, Yu-Ting Zhuang, Yan-Jie Lu\",\"doi\":\"10.1038/s41401-024-01467-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with H<sub>2</sub>O<sub>2</sub> (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study. We showed that the expression levels of eIF4A1 were significantly increased in I/R-treated myocardium and in H<sub>2</sub>O<sub>2</sub>- or H/R-treated NMVCs. In NMVCs, eIF4A1 overexpression drastically enhanced LDH level, caspase 3 activity, and cell apoptosis. eIF4A1 overexpression also significantly reduced anti-apoptotic protein Bcl2 and elevated pro-apoptotic protein Bax expression, whereas eIF4A1 deficiency produced the opposite responses. Importantly, cardiomyocyte-specific eIF4A1 knockout attenuated cardiomyocyte apoptosis, reduced infarct area, and improved cardiac function in myocardial I/R mice. We demonstrated that eIF4A1 directly bound to transgelin (Tagln) to prevent its ubiquitination degradation and subsequent up-regulation of p53, and then promoted nuclear translocation of Tagln and p53. Nuclear localization of Tagln and p53 was increased in H<sub>2</sub>O<sub>2</sub>-treated NMVCs. Silencing Tagln reversed the pro-apoptotic effects of eIF4A1. Noticeably, eIF4A1 exerted the similar effects in AC16 human cardiomyocytes. In conclusion, eIF4A1 is a detrimental factor in myocardial I/R injury via promoting expression and nuclear translocation of Tagln and p53 and might be a potential target for myocardial I/R injury. This study highlights a novel biological role of eIF4A1 by interacting with non-translational-related factor Tagln in myocardial I/R injury.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"1236-1249\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-024-01467-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01467-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物翻译起始因子4A1 (eIF4A1)是一种atp依赖的RNA解旋酶,参与多种生物和病理过程,如细胞增殖和凋亡,以及癌症。在这项研究中,我们研究了eIF4A1在缺血性心脏病中的作用。结扎左前降支45 min,再灌注24 h,建立小鼠心肌缺血再灌注模型;采用体外培养的新生小鼠心室心肌细胞(NMVCs),分别用200 μM H2O2或H/R(缺氧12 H,复氧12 H)处理。我们发现,在I/ r处理的心肌和H2O2-或H/ r处理的NMVCs中,eIF4A1的表达水平显著升高。在NMVCs中,eIF4A1过表达显著提高LDH水平、caspase 3活性和细胞凋亡。eIF4A1过表达也显著降低抗凋亡蛋白Bcl2和促凋亡蛋白Bax的表达,而eIF4A1缺乏产生相反的反应。重要的是,心肌细胞特异性eIF4A1敲除可减轻心肌细胞凋亡,减少梗死面积,改善心肌I/R小鼠的心功能。我们发现eIF4A1直接与transgelin (Tagln)结合,阻止其泛素化降解和随后p53的上调,进而促进Tagln和p53的核易位。在h2o2处理的NMVCs中,Tagln和p53的核定位增加。沉默Tagln逆转了eIF4A1的促凋亡作用。值得注意的是,eIF4A1在AC16人心肌细胞中发挥了类似的作用。综上所述,eIF4A1通过促进Tagln和p53的表达和核易位,是心肌I/R损伤的有害因子,可能是心肌I/R损伤的潜在靶点。本研究强调了eIF4A1通过与非翻译相关因子Tagln相互作用在心肌I/R损伤中的新的生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with H2O2 (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study. We showed that the expression levels of eIF4A1 were significantly increased in I/R-treated myocardium and in H2O2- or H/R-treated NMVCs. In NMVCs, eIF4A1 overexpression drastically enhanced LDH level, caspase 3 activity, and cell apoptosis. eIF4A1 overexpression also significantly reduced anti-apoptotic protein Bcl2 and elevated pro-apoptotic protein Bax expression, whereas eIF4A1 deficiency produced the opposite responses. Importantly, cardiomyocyte-specific eIF4A1 knockout attenuated cardiomyocyte apoptosis, reduced infarct area, and improved cardiac function in myocardial I/R mice. We demonstrated that eIF4A1 directly bound to transgelin (Tagln) to prevent its ubiquitination degradation and subsequent up-regulation of p53, and then promoted nuclear translocation of Tagln and p53. Nuclear localization of Tagln and p53 was increased in H2O2-treated NMVCs. Silencing Tagln reversed the pro-apoptotic effects of eIF4A1. Noticeably, eIF4A1 exerted the similar effects in AC16 human cardiomyocytes. In conclusion, eIF4A1 is a detrimental factor in myocardial I/R injury via promoting expression and nuclear translocation of Tagln and p53 and might be a potential target for myocardial I/R injury. This study highlights a novel biological role of eIF4A1 by interacting with non-translational-related factor Tagln in myocardial I/R injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信