Semaglutide通过能量改善和线粒体质量控制保护db/db小鼠心肌细胞。

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Acta Pharmacologica Sinica Pub Date : 2025-05-01 Epub Date: 2025-01-24 DOI:10.1038/s41401-024-01448-9
Meng-Yun Tian, Ji-Qin Yang, Jin-Chuan Hu, Shan Lu, Yong Ji
{"title":"Semaglutide通过能量改善和线粒体质量控制保护db/db小鼠心肌细胞。","authors":"Meng-Yun Tian, Ji-Qin Yang, Jin-Chuan Hu, Shan Lu, Yong Ji","doi":"10.1038/s41401-024-01448-9","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients. However, the cardioprotective mechanism of semaglutide, especially its direct effects on cardiomyocytes (CMs), is not fully understood. Here, we used 8-week diabetic and obese db/db mice treated with semaglutide (200 μg·kg·d<sup>-1</sup>, i.p.) to study its direct effect on CMs and the underlying mechanisms. Our results revealed that the consecutive application of semaglutide improved cardiac function. Increased AMPK and ULK1 phosphorylation levels were detected, accompanied by elevated [Ca<sup>2+</sup>]<sub>mito</sub>. Seahorse analysis revealed that semaglutide increases ATP production via elevated basal and maximum respiration rates as well as spare respiration capacity in CMs. Transmission electron microscopy revealed improved mitochondrial morphology in the cardiomyocytes of db/db mice. On the other hand, Western blot analysis revealed increased Parkin and LC3 protein expression, indicating mitophagy in CMs. Collectively, our findings demonstrate that semaglutide directly protects CMs from high-glucose damage by promoting AMPK-dependent ATP production as well as ULK1-mediated mitophagy in db/db mice.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1250-1261"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control.\",\"authors\":\"Meng-Yun Tian, Ji-Qin Yang, Jin-Chuan Hu, Shan Lu, Yong Ji\",\"doi\":\"10.1038/s41401-024-01448-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients. However, the cardioprotective mechanism of semaglutide, especially its direct effects on cardiomyocytes (CMs), is not fully understood. Here, we used 8-week diabetic and obese db/db mice treated with semaglutide (200 μg·kg·d<sup>-1</sup>, i.p.) to study its direct effect on CMs and the underlying mechanisms. Our results revealed that the consecutive application of semaglutide improved cardiac function. Increased AMPK and ULK1 phosphorylation levels were detected, accompanied by elevated [Ca<sup>2+</sup>]<sub>mito</sub>. Seahorse analysis revealed that semaglutide increases ATP production via elevated basal and maximum respiration rates as well as spare respiration capacity in CMs. Transmission electron microscopy revealed improved mitochondrial morphology in the cardiomyocytes of db/db mice. On the other hand, Western blot analysis revealed increased Parkin and LC3 protein expression, indicating mitophagy in CMs. Collectively, our findings demonstrate that semaglutide directly protects CMs from high-glucose damage by promoting AMPK-dependent ATP production as well as ULK1-mediated mitophagy in db/db mice.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"1250-1261\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-024-01448-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01448-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病性心肌病可导致终末期心力衰竭,导致2型糖尿病(T2DM)患者的高发病率和死亡率。针对代谢的长期治疗是糖尿病性心肌病治疗的一个新兴领域。Semaglutide是一种胰高血糖素样肽1受体激动剂,已被临床批准用于治疗T2DM,并为患者提供心脏益处。然而,semaglutide的心脏保护机制,特别是其对心肌细胞(CMs)的直接作用尚不完全清楚。本研究采用200 μg·kg·d-1, ig西马鲁肽治疗8周的糖尿病和肥胖db/db小鼠,研究其对CMs的直接作用及其机制。我们的研究结果显示,连续应用西马鲁肽可改善心功能。AMPK和ULK1磷酸化水平升高,并伴有[Ca2+]mito升高。海马分析显示,semaglutide通过提高CMs的基础呼吸速率和最大呼吸速率以及备用呼吸能力来增加ATP的产生。透射电镜显示db/db小鼠心肌细胞线粒体形态改善。另一方面,Western blot分析显示,Parkin和LC3蛋白表达增加,表明CMs中有丝分裂。总之,我们的研究结果表明,在db/db小鼠中,semaglutide通过促进ampk依赖性ATP的产生以及ulk1介导的线粒体自噬,直接保护CMs免受高糖损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semaglutide administration protects cardiomyocytes in db/db mice via energetic improvement and mitochondrial quality control.

Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients. However, the cardioprotective mechanism of semaglutide, especially its direct effects on cardiomyocytes (CMs), is not fully understood. Here, we used 8-week diabetic and obese db/db mice treated with semaglutide (200 μg·kg·d-1, i.p.) to study its direct effect on CMs and the underlying mechanisms. Our results revealed that the consecutive application of semaglutide improved cardiac function. Increased AMPK and ULK1 phosphorylation levels were detected, accompanied by elevated [Ca2+]mito. Seahorse analysis revealed that semaglutide increases ATP production via elevated basal and maximum respiration rates as well as spare respiration capacity in CMs. Transmission electron microscopy revealed improved mitochondrial morphology in the cardiomyocytes of db/db mice. On the other hand, Western blot analysis revealed increased Parkin and LC3 protein expression, indicating mitophagy in CMs. Collectively, our findings demonstrate that semaglutide directly protects CMs from high-glucose damage by promoting AMPK-dependent ATP production as well as ULK1-mediated mitophagy in db/db mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信