{"title":"“摇椅”锌离子电池用BiOBr到br掺杂BiOCl纳米片的原位转化。","authors":"Yuzhu Qian, Qing Zhang, Lijuan Chen, Yaoyong Dong, Ting Song, Yong Pei, Xianyou Wang, Xiongwei Wu, Xuejun Zheng, Wenyuan He, Bei Long","doi":"10.1016/j.jcis.2025.01.171","DOIUrl":null,"url":null,"abstract":"<p><p>Developing insertion-type anodes is essential for designing high-performance \"rocking chair\" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn<sup>2+</sup> storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling. In this study, Br-doped and carbon-coated BiOCl ultrathin nanosheets (Br-BiOCl@NC) are synthesized as high-performance anodes. The ultrathin nanosheet morphology facilitates Zn<sup>2+</sup>/H<sup>+</sup> transfer and the Br doping reduces the Zn<sup>2+</sup>/H<sup>+</sup> diffusion barrier. Additionally, the carbon coating enhances the electronic transfer. Furthermore, an insertion-conversion mechanism involving H<sup>+</sup> and Zn<sup>2+</sup> storage is revealed by ex-situ tests. Therefore, Br-BiOCl@NC exhibits a high discharge capacity of 174 mA h/g at 500 mA/g without capacity degradation after 1000 cycles. The Br-BiOCl@NC//MnO<sub>2</sub> full cell presents a discharge capacity of ≈ 120 mA h/g at 200 mA/g. This work offers valuable insights for the design of high-performance insertion-type anode materials in zinc-ion batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"743-751"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for \\\"rocking chair\\\" zinc-ion battery.\",\"authors\":\"Yuzhu Qian, Qing Zhang, Lijuan Chen, Yaoyong Dong, Ting Song, Yong Pei, Xianyou Wang, Xiongwei Wu, Xuejun Zheng, Wenyuan He, Bei Long\",\"doi\":\"10.1016/j.jcis.2025.01.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing insertion-type anodes is essential for designing high-performance \\\"rocking chair\\\" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn<sup>2+</sup> storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling. In this study, Br-doped and carbon-coated BiOCl ultrathin nanosheets (Br-BiOCl@NC) are synthesized as high-performance anodes. The ultrathin nanosheet morphology facilitates Zn<sup>2+</sup>/H<sup>+</sup> transfer and the Br doping reduces the Zn<sup>2+</sup>/H<sup>+</sup> diffusion barrier. Additionally, the carbon coating enhances the electronic transfer. Furthermore, an insertion-conversion mechanism involving H<sup>+</sup> and Zn<sup>2+</sup> storage is revealed by ex-situ tests. Therefore, Br-BiOCl@NC exhibits a high discharge capacity of 174 mA h/g at 500 mA/g without capacity degradation after 1000 cycles. The Br-BiOCl@NC//MnO<sub>2</sub> full cell presents a discharge capacity of ≈ 120 mA h/g at 200 mA/g. This work offers valuable insights for the design of high-performance insertion-type anode materials in zinc-ion batteries.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"685 \",\"pages\":\"743-751\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.01.171\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.171","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发插入式阳极对于设计高性能的“摇椅”锌离子电池至关重要。BiOCl由于其高比容量和独特的层状结构,显示出作为Zn2+存储的插入式负极材料的巨大潜力。然而,BiOCl在循环过程中的稳定性和动力学性能较差,严重阻碍了其发展。在本研究中,合成了掺杂br和碳包覆的BiOCl超薄纳米片(Br-BiOCl@NC)作为高性能阳极。超薄纳米片的形貌有利于Zn2+/H+的转移,Br的掺杂降低了Zn2+/H+的扩散屏障。此外,碳涂层增强了电子转移。此外,通过非原位实验揭示了H+和Zn2+的插入转化机制。因此,Br-BiOCl@NC在500 mA/g下具有174 mA h/g的高放电容量,在1000次循环后容量不会下降。Br-BiOCl@NC//MnO2电池在200ma /g下的放电容量约为120ma h/g。这项工作为锌离子电池中高性能插入式负极材料的设计提供了有价值的见解。
In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.
Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn2+ storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling. In this study, Br-doped and carbon-coated BiOCl ultrathin nanosheets (Br-BiOCl@NC) are synthesized as high-performance anodes. The ultrathin nanosheet morphology facilitates Zn2+/H+ transfer and the Br doping reduces the Zn2+/H+ diffusion barrier. Additionally, the carbon coating enhances the electronic transfer. Furthermore, an insertion-conversion mechanism involving H+ and Zn2+ storage is revealed by ex-situ tests. Therefore, Br-BiOCl@NC exhibits a high discharge capacity of 174 mA h/g at 500 mA/g without capacity degradation after 1000 cycles. The Br-BiOCl@NC//MnO2 full cell presents a discharge capacity of ≈ 120 mA h/g at 200 mA/g. This work offers valuable insights for the design of high-performance insertion-type anode materials in zinc-ion batteries.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies