{"title":"宏基因组学和FEAST联合应用于菲律宾马尼拉大都会Pasig-Marikina-San Juan (PAMARISAN)河系微生物真核污染源的追踪。","authors":"Diana Rose D. Mamawal, Windell L. Rivera","doi":"10.1007/s10661-025-13630-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation–maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig–Marikina–San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (<i>n</i> = 12), whereas animal fecal samples collected from various farms were classified as sources (<i>n</i> = 29). Taxonomic composition revealed Stramenopila, Alveolata, Rhizaria (SAR), Archaeplastida, and Excavata in the rivers, accounting for 85.1%, 13.2%, and 0.36% mean abundance of microbial sink communities, respectively. Clinically relevant human pathogens were also observed in sink environments. The correlation test demonstrated that dissolved oxygen, total suspended solids, pH, temperature, fecal coliform count, and phosphates were important environmental factors driving community variations. Moreover, FEAST results indicated that sewage (19.6%) was the primary source of microbial eukaryotes, followed by duck (0.644%) and cow (0.566%) feces. Spatio-seasonal variations showed higher contributions at downstream stations and during the wet season, highlighting the role of rainfall in enhancing microbial dispersal. Results from community-based microbial source tracking can be used to explore factors shaping microbial eukaryotes in freshwater environments, assess potential pathogen-related hazards, and inform river conservation and management strategies. Furthermore, this also serves as preliminary data for microbial eukaryotic source tracking in the Philippines, laying groundwork for future research.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined application of metagenomics and FEAST to trace sources of microbial eukaryotic contamination in the Pasig–Marikina–San Juan (PAMARISAN) river system in Metro Manila, Philippines\",\"authors\":\"Diana Rose D. Mamawal, Windell L. Rivera\",\"doi\":\"10.1007/s10661-025-13630-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation–maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig–Marikina–San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (<i>n</i> = 12), whereas animal fecal samples collected from various farms were classified as sources (<i>n</i> = 29). Taxonomic composition revealed Stramenopila, Alveolata, Rhizaria (SAR), Archaeplastida, and Excavata in the rivers, accounting for 85.1%, 13.2%, and 0.36% mean abundance of microbial sink communities, respectively. Clinically relevant human pathogens were also observed in sink environments. The correlation test demonstrated that dissolved oxygen, total suspended solids, pH, temperature, fecal coliform count, and phosphates were important environmental factors driving community variations. Moreover, FEAST results indicated that sewage (19.6%) was the primary source of microbial eukaryotes, followed by duck (0.644%) and cow (0.566%) feces. Spatio-seasonal variations showed higher contributions at downstream stations and during the wet season, highlighting the role of rainfall in enhancing microbial dispersal. Results from community-based microbial source tracking can be used to explore factors shaping microbial eukaryotes in freshwater environments, assess potential pathogen-related hazards, and inform river conservation and management strategies. Furthermore, this also serves as preliminary data for microbial eukaryotic source tracking in the Philippines, laying groundwork for future research.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13630-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13630-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Combined application of metagenomics and FEAST to trace sources of microbial eukaryotic contamination in the Pasig–Marikina–San Juan (PAMARISAN) river system in Metro Manila, Philippines
Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation–maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig–Marikina–San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29). Taxonomic composition revealed Stramenopila, Alveolata, Rhizaria (SAR), Archaeplastida, and Excavata in the rivers, accounting for 85.1%, 13.2%, and 0.36% mean abundance of microbial sink communities, respectively. Clinically relevant human pathogens were also observed in sink environments. The correlation test demonstrated that dissolved oxygen, total suspended solids, pH, temperature, fecal coliform count, and phosphates were important environmental factors driving community variations. Moreover, FEAST results indicated that sewage (19.6%) was the primary source of microbial eukaryotes, followed by duck (0.644%) and cow (0.566%) feces. Spatio-seasonal variations showed higher contributions at downstream stations and during the wet season, highlighting the role of rainfall in enhancing microbial dispersal. Results from community-based microbial source tracking can be used to explore factors shaping microbial eukaryotes in freshwater environments, assess potential pathogen-related hazards, and inform river conservation and management strategies. Furthermore, this also serves as preliminary data for microbial eukaryotic source tracking in the Philippines, laying groundwork for future research.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.