Lei Li , Hannah Smith , Yilin Lyu , Julia Camps , Shuang Qian , Blanca Rodriguez , Abhirup Banerjee , Vicente Grau
{"title":"Personalized topology-informed localization of standard 12-lead ECG electrode placement from incomplete cardiac MRIs for efficient cardiac digital twins","authors":"Lei Li , Hannah Smith , Yilin Lyu , Julia Camps , Shuang Qian , Blanca Rodriguez , Abhirup Banerjee , Vicente Grau","doi":"10.1016/j.media.2025.103472","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiac digital twins (CDTs) offer personalized <em>in-silico</em> cardiac representations for the inference of multi-scale properties tied to cardiac mechanisms. The creation of CDTs requires precise information about the electrode position on the torso, especially for the personalized electrocardiogram (ECG) calibration. However, current studies commonly rely on additional acquisition of torso imaging and manual/semi-automatic methods for ECG electrode localization. In this study, we propose a novel and efficient topology-informed model to fully automatically extract personalized ECG standard electrode locations from 2D clinically standard cardiac MRIs. Specifically, we obtain the sparse torso contours from the cardiac MRIs and then localize the standard electrodes of 12-lead ECG from the contours. Cardiac MRIs aim at imaging of the heart instead of the torso, leading to incomplete torso geometry within the imaging. To tackle the missing topology, we incorporate the electrodes as a subset of the keypoints, which can be explicitly aligned with the 3D torso topology. The experimental results demonstrate that the proposed model outperforms the time-consuming conventional model projection-based method in terms of accuracy (Euclidean distance: <span><math><mrow><mn>1</mn><mo>.</mo><mn>24</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>293</mn></mrow></math></span> cm vs. <span><math><mrow><mn>1</mn><mo>.</mo><mn>48</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>362</mn></mrow></math></span> cm) and efficiency (2 s vs. 30-35 min). We further demonstrate the effectiveness of using the detected electrodes for <em>in-silico</em> ECG simulation, highlighting their potential for creating accurate and efficient CDT models. The code is available at <span><span>https://github.com/lileitech/12lead_ECG_electrode_localizer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103472"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000209","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Personalized topology-informed localization of standard 12-lead ECG electrode placement from incomplete cardiac MRIs for efficient cardiac digital twins
Cardiac digital twins (CDTs) offer personalized in-silico cardiac representations for the inference of multi-scale properties tied to cardiac mechanisms. The creation of CDTs requires precise information about the electrode position on the torso, especially for the personalized electrocardiogram (ECG) calibration. However, current studies commonly rely on additional acquisition of torso imaging and manual/semi-automatic methods for ECG electrode localization. In this study, we propose a novel and efficient topology-informed model to fully automatically extract personalized ECG standard electrode locations from 2D clinically standard cardiac MRIs. Specifically, we obtain the sparse torso contours from the cardiac MRIs and then localize the standard electrodes of 12-lead ECG from the contours. Cardiac MRIs aim at imaging of the heart instead of the torso, leading to incomplete torso geometry within the imaging. To tackle the missing topology, we incorporate the electrodes as a subset of the keypoints, which can be explicitly aligned with the 3D torso topology. The experimental results demonstrate that the proposed model outperforms the time-consuming conventional model projection-based method in terms of accuracy (Euclidean distance: cm vs. cm) and efficiency (2 s vs. 30-35 min). We further demonstrate the effectiveness of using the detected electrodes for in-silico ECG simulation, highlighting their potential for creating accurate and efficient CDT models. The code is available at https://github.com/lileitech/12lead_ECG_electrode_localizer.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.