非负L1-αL2正则化稀疏反褶积波束形成用于声源定位。

IF 1.2 Q3 ACOUSTICS
Zhaohui Du, Yinan Zhu, Han Zhang, Xuchen Wang, Wenyan Lu
{"title":"非负L1-αL2正则化稀疏反褶积波束形成用于声源定位。","authors":"Zhaohui Du, Yinan Zhu, Han Zhang, Xuchen Wang, Wenyan Lu","doi":"10.1121/10.0035418","DOIUrl":null,"url":null,"abstract":"<p><p>This letter proposed a sparse deconvolution localization method (FFT-L1ML2) driven by non-convex L1-αL2 regularization that more closely approximates the ideal L0 norm. It is an alternative that explores the sparse structure of sound sources to enhance localization accuracy, while the original sparse deconvolution beamforming lacks a sufficiently accurate sparse description. An optimization solver composed of forward gradient descent and backward proximal operator is then developed for the FFT-L1ML2 model to reconstruct the beamforming map. Both simulation and experimental results show the effectiveness and superiority of the proposed method in localization accuracy, energy concentration, pseudo source reduction, and computational cost.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse deconvolution beamforming with non-negative L1-αL2 regularization for acoustic source localization.\",\"authors\":\"Zhaohui Du, Yinan Zhu, Han Zhang, Xuchen Wang, Wenyan Lu\",\"doi\":\"10.1121/10.0035418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This letter proposed a sparse deconvolution localization method (FFT-L1ML2) driven by non-convex L1-αL2 regularization that more closely approximates the ideal L0 norm. It is an alternative that explores the sparse structure of sound sources to enhance localization accuracy, while the original sparse deconvolution beamforming lacks a sufficiently accurate sparse description. An optimization solver composed of forward gradient descent and backward proximal operator is then developed for the FFT-L1ML2 model to reconstruct the beamforming map. Both simulation and experimental results show the effectiveness and superiority of the proposed method in localization accuracy, energy concentration, pseudo source reduction, and computational cost.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0035418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0035418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种由非凸L1-αL2正则化驱动的稀疏反卷积定位方法(FFT-L1ML2),该方法更接近理想L0范数。它是一种探索声源稀疏结构以提高定位精度的替代方案,而原始的稀疏反褶积波束形成缺乏足够精确的稀疏描述。针对FFT-L1ML2模型,开发了一种由前向梯度下降算子和后向近端算子组成的优化求解器,用于波束形成图的重建。仿真和实验结果均表明了该方法在定位精度、能量集中、伪源减少和计算成本等方面的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse deconvolution beamforming with non-negative L1-αL2 regularization for acoustic source localization.

This letter proposed a sparse deconvolution localization method (FFT-L1ML2) driven by non-convex L1-αL2 regularization that more closely approximates the ideal L0 norm. It is an alternative that explores the sparse structure of sound sources to enhance localization accuracy, while the original sparse deconvolution beamforming lacks a sufficiently accurate sparse description. An optimization solver composed of forward gradient descent and backward proximal operator is then developed for the FFT-L1ML2 model to reconstruct the beamforming map. Both simulation and experimental results show the effectiveness and superiority of the proposed method in localization accuracy, energy concentration, pseudo source reduction, and computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信