通过多个时间到事件介质对生存结果的非参数路径特异性影响。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yen-Tsung Huang, Ju-Sheng Hong
{"title":"通过多个时间到事件介质对生存结果的非参数路径特异性影响。","authors":"Yen-Tsung Huang, Ju-Sheng Hong","doi":"10.1002/sim.10327","DOIUrl":null,"url":null,"abstract":"<p><p>A causal mediation model with multiple time-to-event mediators is exemplified by the natural course of human disease marked by sequential milestones with a time-to-event nature. For example, from hepatitis B infection to death, patients may experience intermediate events such as liver cirrhosis and liver cancer. The sequential events of hepatitis, cirrhosis, cancer, and death are susceptible to right censoring; moreover, the latter events may preclude the former events. Casting the natural course of human diseases in the framework of causal mediation modeling, we establish a model with intermediate and terminal events as the mediators and outcomes, respectively. We define the interventional analog of path-specific effects (iPSEs) as the effect of an exposure on a terminal event mediated (or not mediated) by any combination of intermediate events without parametric models. The expression of a counting process-based counterfactual hazard is derived under the sequential ignorability assumption. We employ composite nonparametric likelihood estimation to obtain maximum likelihood estimators for the counterfactual hazard and iPSEs. Our proposed estimators achieve asymptotic unbiasedness, uniform consistency, and weak convergence. Applying the proposed method, we show that hepatitis B induced mortality is mostly mediated through liver cancer and/or cirrhosis whereas hepatitis C induced mortality may be through extrahepatic diseases.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 3-4","pages":"e10327"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Path-Specific Effects on a Survival Outcome Through Multiple Time-to-Event Mediators.\",\"authors\":\"Yen-Tsung Huang, Ju-Sheng Hong\",\"doi\":\"10.1002/sim.10327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A causal mediation model with multiple time-to-event mediators is exemplified by the natural course of human disease marked by sequential milestones with a time-to-event nature. For example, from hepatitis B infection to death, patients may experience intermediate events such as liver cirrhosis and liver cancer. The sequential events of hepatitis, cirrhosis, cancer, and death are susceptible to right censoring; moreover, the latter events may preclude the former events. Casting the natural course of human diseases in the framework of causal mediation modeling, we establish a model with intermediate and terminal events as the mediators and outcomes, respectively. We define the interventional analog of path-specific effects (iPSEs) as the effect of an exposure on a terminal event mediated (or not mediated) by any combination of intermediate events without parametric models. The expression of a counting process-based counterfactual hazard is derived under the sequential ignorability assumption. We employ composite nonparametric likelihood estimation to obtain maximum likelihood estimators for the counterfactual hazard and iPSEs. Our proposed estimators achieve asymptotic unbiasedness, uniform consistency, and weak convergence. Applying the proposed method, we show that hepatitis B induced mortality is mostly mediated through liver cancer and/or cirrhosis whereas hepatitis C induced mortality may be through extrahepatic diseases.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 3-4\",\"pages\":\"e10327\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10327\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类疾病的自然进程以具有时间到事件性质的连续里程碑为标志,以此为例说明了具有多个时间到事件介质的因果中介模型。例如,从乙型肝炎感染到死亡,患者可能会经历肝硬化和肝癌等中间事件。肝炎、肝硬化、癌症和死亡等连续事件容易受到正确的审查;此外,后一种事件可能会排除前一种事件。将人类疾病的自然过程置于因果中介模型的框架中,建立了以中间事件和末端事件分别作为中介和结果的模型。我们将路径特异性效应(iPSEs)的介入模拟定义为暴露对无参数模型的任何中间事件组合介导(或不介导)的终端事件的影响。在顺序可忽略性假设下,推导了基于计数过程的反事实危害表达式。我们采用复合非参数似然估计方法得到了反事实危害和ipse的极大似然估计。我们提出的估计量具有渐近无偏性、一致一致性和弱收敛性。应用提出的方法,我们发现乙型肝炎引起的死亡主要是通过肝癌和/或肝硬化介导的,而丙型肝炎引起的死亡可能是通过肝外疾病介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Path-Specific Effects on a Survival Outcome Through Multiple Time-to-Event Mediators.

A causal mediation model with multiple time-to-event mediators is exemplified by the natural course of human disease marked by sequential milestones with a time-to-event nature. For example, from hepatitis B infection to death, patients may experience intermediate events such as liver cirrhosis and liver cancer. The sequential events of hepatitis, cirrhosis, cancer, and death are susceptible to right censoring; moreover, the latter events may preclude the former events. Casting the natural course of human diseases in the framework of causal mediation modeling, we establish a model with intermediate and terminal events as the mediators and outcomes, respectively. We define the interventional analog of path-specific effects (iPSEs) as the effect of an exposure on a terminal event mediated (or not mediated) by any combination of intermediate events without parametric models. The expression of a counting process-based counterfactual hazard is derived under the sequential ignorability assumption. We employ composite nonparametric likelihood estimation to obtain maximum likelihood estimators for the counterfactual hazard and iPSEs. Our proposed estimators achieve asymptotic unbiasedness, uniform consistency, and weak convergence. Applying the proposed method, we show that hepatitis B induced mortality is mostly mediated through liver cancer and/or cirrhosis whereas hepatitis C induced mortality may be through extrahepatic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信