Connor S Murphy, Heather Fairfield, Victoria E DeMambro, Samaa Fadel, Carlos A Gartner, Michelle Karam, Christian Potts, Princess Rodriguez, Ya-Wei Qiang, Habib Hamidi, Xiangnan Guan, Calvin P H Vary, Michaela R Reagan
{"title":"抑制酰基辅酶a合成酶长链同工酶可减少多发性骨髓瘤细胞增殖并引起线粒体功能障碍。","authors":"Connor S Murphy, Heather Fairfield, Victoria E DeMambro, Samaa Fadel, Carlos A Gartner, Michelle Karam, Christian Potts, Princess Rodriguez, Ya-Wei Qiang, Habib Hamidi, Xiangnan Guan, Calvin P H Vary, Michaela R Reagan","doi":"10.1002/1878-0261.13794","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM. ACSLs convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. Analysis of the Multiple Myeloma Research Foundation (MMRF) CoMMpass<sup>SM</sup> study showed that high ACSL1 and ACSL4 expression in myeloma cells are both associated with worse clinical outcomes for MM patients. Cancer Dependency Map (DepMap) data showed that all five ACSLs have negative Chronos scores, and ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support myeloma cell line fitness. Inhibition of ACSLs in myeloma cell lines in vitro, using the pharmacological inhibitor Triacsin C (TriC), increased apoptosis, decreased proliferation, and decreased cell viability, in a dose- and time-dependent manner. RNA-sequencing analysis of MM.1S cells treated with TriC showed a significant enrichment in apoptosis, ferroptosis, and endoplasmic reticulum (ER) stress, and proteomic analysis of these cells revealed enriched pathways for mitochondrial dysfunction and oxidative phosphorylation. TriC also rewired mitochondrial metabolism by decreasing mitochondrial membrane potential, increasing mitochondrial superoxide levels, decreasing mitochondrial ATP production rates, and impairing cellular respiration. Overall, our data support the hypothesis that suppression of ACSLs in myeloma cells is a novel metabolic target in MM that inhibits their viability, implicating this family as a promising therapeutic target in treating myeloma.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"1687-1706"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161464/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of acyl-CoA synthetase long-chain isozymes decreases multiple myeloma cell proliferation and causes mitochondrial dysfunction.\",\"authors\":\"Connor S Murphy, Heather Fairfield, Victoria E DeMambro, Samaa Fadel, Carlos A Gartner, Michelle Karam, Christian Potts, Princess Rodriguez, Ya-Wei Qiang, Habib Hamidi, Xiangnan Guan, Calvin P H Vary, Michaela R Reagan\",\"doi\":\"10.1002/1878-0261.13794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM. ACSLs convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. Analysis of the Multiple Myeloma Research Foundation (MMRF) CoMMpass<sup>SM</sup> study showed that high ACSL1 and ACSL4 expression in myeloma cells are both associated with worse clinical outcomes for MM patients. Cancer Dependency Map (DepMap) data showed that all five ACSLs have negative Chronos scores, and ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support myeloma cell line fitness. Inhibition of ACSLs in myeloma cell lines in vitro, using the pharmacological inhibitor Triacsin C (TriC), increased apoptosis, decreased proliferation, and decreased cell viability, in a dose- and time-dependent manner. RNA-sequencing analysis of MM.1S cells treated with TriC showed a significant enrichment in apoptosis, ferroptosis, and endoplasmic reticulum (ER) stress, and proteomic analysis of these cells revealed enriched pathways for mitochondrial dysfunction and oxidative phosphorylation. TriC also rewired mitochondrial metabolism by decreasing mitochondrial membrane potential, increasing mitochondrial superoxide levels, decreasing mitochondrial ATP production rates, and impairing cellular respiration. Overall, our data support the hypothesis that suppression of ACSLs in myeloma cells is a novel metabolic target in MM that inhibits their viability, implicating this family as a promising therapeutic target in treating myeloma.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"1687-1706\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161464/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13794\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13794","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
多发性骨髓瘤(MM)是一种无法治愈的浆细胞癌,5年生存率为59%。脂肪酸(FA)代谢失调与MM的发生和进展有关;然而,潜在的机制仍不清楚。本文探讨了长链脂肪酸辅酶A连接酶(ACSL)家族成员在MM中的作用。ACSL将游离长链脂肪酸转化为脂肪酰基辅酶A酯,在分解代谢和合成代谢脂肪酸代谢中发挥关键作用。多发性骨髓瘤研究基金会(MMRF)的CoMMpassSM研究分析显示,骨髓瘤细胞中ACSL1和ACSL4的高表达均与MM患者较差的临床结果相关。癌症依赖图谱(DepMap)数据显示,所有5个ACSLs的Chronos评分均为负,ACSL3和ACSL4位于支持骨髓瘤细胞系适应度的前25%的Hallmark脂肪酸代谢基因之列。体外使用药物抑制剂Triacsin C (TriC)抑制骨髓瘤细胞系中的acsl,以剂量和时间依赖的方式增加细胞凋亡,减少增殖,降低细胞活力。TriC处理的MM.1S细胞的rna测序分析显示,凋亡、铁凋亡和内质网(ER)应激显著富集,这些细胞的蛋白质组学分析揭示了线粒体功能障碍和氧化磷酸化的富集途径。TriC还通过降低线粒体膜电位、增加线粒体超氧化物水平、降低线粒体ATP生成速率和损害细胞呼吸来重新连接线粒体代谢。总的来说,我们的数据支持这样的假设,即骨髓瘤细胞acsl的抑制是MM中一个新的代谢靶点,可以抑制它们的活力,这意味着该家族是治疗骨髓瘤的一个有希望的治疗靶点。
Inhibition of acyl-CoA synthetase long-chain isozymes decreases multiple myeloma cell proliferation and causes mitochondrial dysfunction.
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM. ACSLs convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. Analysis of the Multiple Myeloma Research Foundation (MMRF) CoMMpassSM study showed that high ACSL1 and ACSL4 expression in myeloma cells are both associated with worse clinical outcomes for MM patients. Cancer Dependency Map (DepMap) data showed that all five ACSLs have negative Chronos scores, and ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support myeloma cell line fitness. Inhibition of ACSLs in myeloma cell lines in vitro, using the pharmacological inhibitor Triacsin C (TriC), increased apoptosis, decreased proliferation, and decreased cell viability, in a dose- and time-dependent manner. RNA-sequencing analysis of MM.1S cells treated with TriC showed a significant enrichment in apoptosis, ferroptosis, and endoplasmic reticulum (ER) stress, and proteomic analysis of these cells revealed enriched pathways for mitochondrial dysfunction and oxidative phosphorylation. TriC also rewired mitochondrial metabolism by decreasing mitochondrial membrane potential, increasing mitochondrial superoxide levels, decreasing mitochondrial ATP production rates, and impairing cellular respiration. Overall, our data support the hypothesis that suppression of ACSLs in myeloma cells is a novel metabolic target in MM that inhibits their viability, implicating this family as a promising therapeutic target in treating myeloma.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.