肥厚性心力衰竭促进肠道生态失调和肠道渗漏在白细胞介素10缺乏小鼠。

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Prabhat Ranjan, Sumanta Kumar Goswami, Roshan Kumar Dutta, Karen Colin, Harish Chandra Pal, Qinkun Zhang, Hind Lal, Ram Prasad, Suresh Kumar Verma
{"title":"肥厚性心力衰竭促进肠道生态失调和肠道渗漏在白细胞介素10缺乏小鼠。","authors":"Prabhat Ranjan, Sumanta Kumar Goswami, Roshan Kumar Dutta, Karen Colin, Harish Chandra Pal, Qinkun Zhang, Hind Lal, Ram Prasad, Suresh Kumar Verma","doi":"10.1152/ajpheart.00323.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it is unclear whether PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage. We hypothesized that transverse aortic constriction (TAC) exacerbates immune cell homing to the gut (small intestine and colon), promoting dysbiosis and gut leakage in IL-10 KO mice. HF was induced in 8- to 10-wk-old C57BL/6J wild-type (WT) and B6.129P2-Il10tm1Cgn/J mutant (IL-10 KO) male and female mice by TAC and cardiac function was measured using visual sonics VEVO 3100. Fourteen days post-TAC, levels of monocytes, macrophages, neutrophils, and proinflammatory cytokines were measured in blood and gut. Gut dysbiosis was assessed via 16S rRNA sequencing in feces at 56 days post-TAC. IL-10 KO mice showed worsened cardiac dysfunction post-TAC. TAC worsened monocytes, and neutrophils infiltration in systemic circulation and facilitated their homing to the gut in IL-10 KO mice. Intriguingly, proinflammatory cytokines level was increased in blood, and gut of IL-10 KO mice following TAC. Furthermore, IL-10 expression was reduced in the colon of WT mice post-TAC. Moreover, TAC exacerbated gut dysbiosis in IL-10 KO mice. Finally, an impaired intestinal permeability was noted in IL-10 KO mice post-TAC. In conclusion, TAC-induced systemic inflammation leads to gut dysbiosis and impaired gut permeability in IL-10 KO mice, indicating IL-10's potential role in regulating intestinal integrity and microbiota balance during heart failure.<b>NEW & NOTEWORTHY</b> IL-10, crucial for systemic inflammation regulation and gut mucosal homeostasis, was investigated using IL-10 knockout (KO) mice. Exacerbated gut inflammation was observed post-transverse aortic constriction (TAC) in IL-10-depleted mice, whereas wild-type (WT) mice showed reduced IL-10 gene expression in colon and ileum. TAC induced gut dysbiosis and leakage in IL-10 KO mice, suggesting a link between enhanced inflammatory signaling in heart failure and multi-organ damage via gut dysbiosis and leakage.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H447-H459"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypertrophic heart failure promotes gut dysbiosis and gut leakage in interleukin 10-deficient mice.\",\"authors\":\"Prabhat Ranjan, Sumanta Kumar Goswami, Roshan Kumar Dutta, Karen Colin, Harish Chandra Pal, Qinkun Zhang, Hind Lal, Ram Prasad, Suresh Kumar Verma\",\"doi\":\"10.1152/ajpheart.00323.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it is unclear whether PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage. We hypothesized that transverse aortic constriction (TAC) exacerbates immune cell homing to the gut (small intestine and colon), promoting dysbiosis and gut leakage in IL-10 KO mice. HF was induced in 8- to 10-wk-old C57BL/6J wild-type (WT) and B6.129P2-Il10tm1Cgn/J mutant (IL-10 KO) male and female mice by TAC and cardiac function was measured using visual sonics VEVO 3100. Fourteen days post-TAC, levels of monocytes, macrophages, neutrophils, and proinflammatory cytokines were measured in blood and gut. Gut dysbiosis was assessed via 16S rRNA sequencing in feces at 56 days post-TAC. IL-10 KO mice showed worsened cardiac dysfunction post-TAC. TAC worsened monocytes, and neutrophils infiltration in systemic circulation and facilitated their homing to the gut in IL-10 KO mice. Intriguingly, proinflammatory cytokines level was increased in blood, and gut of IL-10 KO mice following TAC. Furthermore, IL-10 expression was reduced in the colon of WT mice post-TAC. Moreover, TAC exacerbated gut dysbiosis in IL-10 KO mice. Finally, an impaired intestinal permeability was noted in IL-10 KO mice post-TAC. In conclusion, TAC-induced systemic inflammation leads to gut dysbiosis and impaired gut permeability in IL-10 KO mice, indicating IL-10's potential role in regulating intestinal integrity and microbiota balance during heart failure.<b>NEW & NOTEWORTHY</b> IL-10, crucial for systemic inflammation regulation and gut mucosal homeostasis, was investigated using IL-10 knockout (KO) mice. Exacerbated gut inflammation was observed post-transverse aortic constriction (TAC) in IL-10-depleted mice, whereas wild-type (WT) mice showed reduced IL-10 gene expression in colon and ileum. TAC induced gut dysbiosis and leakage in IL-10 KO mice, suggesting a link between enhanced inflammatory signaling in heart failure and multi-organ damage via gut dysbiosis and leakage.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H447-H459\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00323.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00323.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是世界范围内的主要死亡原因。我们已经证明压力过载(PO)诱导的炎症细胞募集会导致IL-10敲除(KO)小鼠心力衰竭。然而,尚不清楚po诱导的炎症细胞是否也以肠道黏膜为靶点,导致肠道生态失调和渗漏。我们假设TAC(横断主动脉收缩)加剧了免疫细胞归巢到肠道(小肠和结肠),促进IL-10 KO小鼠的生态失调和肠道渗漏。采用TAC诱导8-10周龄C57BL/6J野生型(WT)和B6.129P2-Il10tm1Cgn/J突变型(IL-10 KO)雄性和雌性小鼠HF,用VEVO 3100视声仪测定心功能。tac后14天,测量血液和肠道中单核细胞、巨噬细胞、中性粒细胞和促炎细胞因子的水平。在tac后56天,通过粪便中的16S rRNA测序评估肠道生态失调。IL-10 KO小鼠tac后心功能障碍加重。在IL-10 KO小鼠中,TAC使单核细胞和中性粒细胞在体循环中的浸润恶化,并促进它们归巢到肠道。有趣的是,TAC后IL-10 KO小鼠血液和肠道中的促炎细胞因子水平升高。此外,tac后WT小鼠结肠中IL-10表达降低。此外,TAC加重了IL-10 KO小鼠的肠道生态失调。最后,IL-10 KO小鼠在tac后肠通透性受损。综上所述,tac诱导的全身性炎症导致IL-10 KO小鼠肠道生态失调和肠道通透性受损,表明IL-10在心力衰竭期间调节肠道完整性和微生物群平衡的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypertrophic heart failure promotes gut dysbiosis and gut leakage in interleukin 10-deficient mice.

Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it is unclear whether PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage. We hypothesized that transverse aortic constriction (TAC) exacerbates immune cell homing to the gut (small intestine and colon), promoting dysbiosis and gut leakage in IL-10 KO mice. HF was induced in 8- to 10-wk-old C57BL/6J wild-type (WT) and B6.129P2-Il10tm1Cgn/J mutant (IL-10 KO) male and female mice by TAC and cardiac function was measured using visual sonics VEVO 3100. Fourteen days post-TAC, levels of monocytes, macrophages, neutrophils, and proinflammatory cytokines were measured in blood and gut. Gut dysbiosis was assessed via 16S rRNA sequencing in feces at 56 days post-TAC. IL-10 KO mice showed worsened cardiac dysfunction post-TAC. TAC worsened monocytes, and neutrophils infiltration in systemic circulation and facilitated their homing to the gut in IL-10 KO mice. Intriguingly, proinflammatory cytokines level was increased in blood, and gut of IL-10 KO mice following TAC. Furthermore, IL-10 expression was reduced in the colon of WT mice post-TAC. Moreover, TAC exacerbated gut dysbiosis in IL-10 KO mice. Finally, an impaired intestinal permeability was noted in IL-10 KO mice post-TAC. In conclusion, TAC-induced systemic inflammation leads to gut dysbiosis and impaired gut permeability in IL-10 KO mice, indicating IL-10's potential role in regulating intestinal integrity and microbiota balance during heart failure.NEW & NOTEWORTHY IL-10, crucial for systemic inflammation regulation and gut mucosal homeostasis, was investigated using IL-10 knockout (KO) mice. Exacerbated gut inflammation was observed post-transverse aortic constriction (TAC) in IL-10-depleted mice, whereas wild-type (WT) mice showed reduced IL-10 gene expression in colon and ileum. TAC induced gut dysbiosis and leakage in IL-10 KO mice, suggesting a link between enhanced inflammatory signaling in heart failure and multi-organ damage via gut dysbiosis and leakage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信