远程PCR作为评估线粒体DNA损伤的工具:该技术的原理、益处和局限性。

IF 2.7 3区 生物学 Q2 GENETICS & HEREDITY
Artem P. Gureev, Veronika V. Nesterova, Irina S. Sadovnikova
{"title":"远程PCR作为评估线粒体DNA损伤的工具:该技术的原理、益处和局限性。","authors":"Artem P. Gureev,&nbsp;Veronika V. Nesterova,&nbsp;Irina S. Sadovnikova","doi":"10.1016/j.dnarep.2025.103812","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"146 ","pages":"Article 103812"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique\",\"authors\":\"Artem P. Gureev,&nbsp;Veronika V. Nesterova,&nbsp;Irina S. Sadovnikova\",\"doi\":\"10.1016/j.dnarep.2025.103812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"146 \",\"pages\":\"Article 103812\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786425000084\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体DNA (mtDNA)通常比核DNA更容易受到损伤。这是由于其在线粒体基质中的定位,其中大部分活性氧产生。线粒体没有组蛋白,mtDNA仅受到组蛋白样蛋白的轻微保护,并且被认为具有较低效率的修复机制。在这篇综述中,我们讨论了远程PCR方法,可以有效地检测mtDNA损伤。该方法是基于假设各种类型的DNA损伤会干扰DNA聚合酶的进程,导致扩增效率降低。它可以用来估计mtDNA中额外(高于背景)病变的数量。这篇综述概述了该方法的演变、变化、在各种模式生物中的应用、该方法的优点和局限性,以及克服这些局限性的方法。在过去的二十年中,远程PCR的使用使得mtDNA修复机制的研究,线粒体基因组损伤在各种神经退行性疾病、衰老、缺血和肿瘤过程中的特征,以及抗癌治疗中的研究成为可能。mtDNA损伤评估也被建议用于环境生物监测。这篇综述对该方法的各种变体进行了批判性评估,总结了积累的数据,并在组织水平上讨论了mtDNA损伤在不同器官中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信