神经重塑:人类大脑和人工智能在学习过程中的可塑性。

American journal of neurodegenerative disease Pub Date : 2024-12-25 eCollection Date: 2024-01-01 DOI:10.62347/NHKD7661
Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Ommolbanin Soleimani, Sahar Ahmadi
{"title":"神经重塑:人类大脑和人工智能在学习过程中的可塑性。","authors":"Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Ommolbanin Soleimani, Sahar Ahmadi","doi":"10.62347/NHKD7661","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn.</p><p><strong>Objectives: </strong>To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes.</p><p><strong>Methods: </strong>A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems.</p><p><strong>Results: </strong>Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections.</p><p><strong>Conclusions: </strong>Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"13 5","pages":"34-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural reshaping: the plasticity of human brain and artificial intelligence in the learning process.\",\"authors\":\"Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Ommolbanin Soleimani, Sahar Ahmadi\",\"doi\":\"10.62347/NHKD7661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn.</p><p><strong>Objectives: </strong>To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes.</p><p><strong>Methods: </strong>A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems.</p><p><strong>Results: </strong>Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections.</p><p><strong>Conclusions: </strong>Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.</p>\",\"PeriodicalId\":72170,\"journal\":{\"name\":\"American journal of neurodegenerative disease\",\"volume\":\"13 5\",\"pages\":\"34-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of neurodegenerative disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62347/NHKD7661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/NHKD7661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了神经重塑的概念以及人类和人工智能适应和学习的机制。目的:探讨人类大脑可塑性和人工神经网络可塑性的相似之处和区别,重点研究它们的学习过程。方法:采用文献综述和机器学习实验进行对比分析,具体采用多层感知器神经网络来研究回归和分类问题。结果:实验结果表明,机器学习模型类似于人类的神经可塑性,通过迭代学习和优化来提高性能,在加强和调整连接方面有相似之处。结论:了解神经和人工可塑性的共同原理和局限性可以推动人工智能设计和认知神经科学的进步,为未来的跨学科创新铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural reshaping: the plasticity of human brain and artificial intelligence in the learning process.

This study explores the concept of neural reshaping and the mechanisms through which both human and artificial intelligence adapt and learn.

Objectives: To investigate the parallels and distinctions between human brain plasticity and artificial neural network plasticity, with a focus on their learning processes.

Methods: A comparative analysis was conducted using literature reviews and machine learning experiments, specifically employing a multi-layer perceptron neural network to examine regression and classification problems.

Results: Experimental findings demonstrate that machine learning models, similar to human neuroplasticity, enhance performance through iterative learning and optimization, drawing parallels in strengthening and adjusting connections.

Conclusions: Understanding the shared principles and limitations of neural and artificial plasticity can drive advancements in AI design and cognitive neuroscience, paving the way for future interdisciplinary innovations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信