利用β-榄香烯降低骨肉瘤的干性和耐药:AKT/FOXO1信号通路和免疫调节的焦点

IF 3.4 2区 医学 Q2 Medicine
Shaochun Zhang , Zhijie Xing , Jing Ke
{"title":"利用β-榄香烯降低骨肉瘤的干性和耐药:AKT/FOXO1信号通路和免疫调节的焦点","authors":"Shaochun Zhang ,&nbsp;Zhijie Xing ,&nbsp;Jing Ke","doi":"10.1016/j.jbo.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.</div></div><div><h3>Methods</h3><div>Osteosarcoma stem cells were isolated and induced for DOX resistance. <em>In vitro</em> and <em>in vivo</em> models were employed to assess β-elemene’s impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene.</div></div><div><h3>Results</h3><div><em>In vivo</em> animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. <em>In vitro</em> experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, <em>in vivo</em> animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis.</div></div><div><h3>Conclusion</h3><div>β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"50 ","pages":"Article 100655"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation\",\"authors\":\"Shaochun Zhang ,&nbsp;Zhijie Xing ,&nbsp;Jing Ke\",\"doi\":\"10.1016/j.jbo.2024.100655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.</div></div><div><h3>Methods</h3><div>Osteosarcoma stem cells were isolated and induced for DOX resistance. <em>In vitro</em> and <em>in vivo</em> models were employed to assess β-elemene’s impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene.</div></div><div><h3>Results</h3><div><em>In vivo</em> animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. <em>In vitro</em> experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, <em>in vivo</em> animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis.</div></div><div><h3>Conclusion</h3><div>β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.</div></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":\"50 \",\"pages\":\"Article 100655\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212137424001350\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001350","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:骨肉瘤是一种高度恶性的骨肿瘤,由于其干细胞性和耐药倾向,特别是对阿霉素(DOX)的耐药,给治疗带来了重大挑战。本研究旨在探讨β-榄香烯通过抑制Akt/FoxO1信号通路,激活巨噬细胞介导的炎症微环境,降低骨肉瘤干细胞的干性,最终降低DOX耐药的机制。方法:分离骨肉瘤干细胞,诱导其对DOX产生耐药性。采用体外和体内模型评估β-榄香烯对细胞活力、干细胞性和耐药性的影响。生物信息学分析、流式细胞术和免疫荧光染色评价信号通路活性和巨噬细胞极化。此外,我们还建立了异种骨肉瘤小鼠模型来证实β-榄香烯的治疗作用。结果:体内动物实验证明β-榄香烯能降低骨肉瘤的耐药性。生物信息学分析显示AKT1是骨肉瘤进展的关键核心基因,通过FOXO信号通路起作用。此外,AKT抑制骨肉瘤免疫细胞浸润,抑制骨肉瘤进展过程中的免疫反应。β-榄香烯可能通过介导TP53调节PTEN和随后的AKT1来影响骨肉瘤的进展。体外实验表明,β-榄香烯通过抑制Akt/FoxO1信号轴促进M1巨噬细胞活化,从而降低骨肉瘤干细胞的干性。最后,体内动物实验证实,β-榄香烯通过抑制Akt/FoxO1信号轴促进M1巨噬细胞活化,从而降低骨肉瘤耐药。结论:β-榄香烯通过靶向AKT/FOXO1通路和调节肿瘤免疫微环境的双重机制,具有降低骨肉瘤干细胞性和耐药的潜力。这些发现表明β-榄香烯作为骨肉瘤的潜在辅助疗法,为克服化疗耐药和改善患者预后提供了新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation

Objective

Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.

Methods

Osteosarcoma stem cells were isolated and induced for DOX resistance. In vitro and in vivo models were employed to assess β-elemene’s impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene.

Results

In vivo animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. In vitro experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, in vivo animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis.

Conclusion

β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信