盐胁迫下野生大豆(甘氨酸大豆)转录组分析及盐响应基因鉴定。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genomics Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI:10.1007/s13258-024-01599-3
Man Bo Lee, Taekyeom Kim, Dae Yeon Kim, Su Kyoung Lee, Jae Yoon Kim
{"title":"盐胁迫下野生大豆(甘氨酸大豆)转录组分析及盐响应基因鉴定。","authors":"Man Bo Lee, Taekyeom Kim, Dae Yeon Kim, Su Kyoung Lee, Jae Yoon Kim","doi":"10.1007/s13258-024-01599-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.</p><p><strong>Objective: </strong>We conducted a transcriptome analysis of G. soja subjected to salt stress to profile the transcriptomes and identify salt-responsive genes.</p><p><strong>Methods: </strong>G. soja was subjected to salt stress at 0, 24, and 48 h. RNA was sequenced using the Illumina NovaSeq 6000 platform. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) and to analyze alterations in salt-responsive genes.</p><p><strong>Results: </strong>A total of 249 and 1890 DEGs were identified at 24 and 48 h under salt stress, respectively. Among the DEGs, 45 and 252 transcription factors, including bHLH, MYB, and WRKY, were identified at 24 and 48 h, respectively. Additionally, 602 and 1850 DASGs were identified at 24 and 48 h, respectively. For DASGs, significant GO term enrichments included 'mRNA processing', 'Chromatin organization', 'Nucleus', and 'Transcription cofactor activity' at 48 h. The KEGG pathways, 'Spliceosome' and the 'mRNA surveillance pathway', were significantly enriched in DASGs at 48 h. Salt-responsive genes were identified in DEGs and/or DASGs, specifically GsJ3, GsACA12, GsACA13, GsHSFA2-like, and GsHSF30-like.</p><p><strong>Conclusion: </strong>Through the analysis of DEGs, DASGs, and transcription factor predictions, we identified key factors involved in the salt stress response and tolerance of G. soja, which could contribute to salt-tolerant soybean cultivar through genetic engineering strategies.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"351-365"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome analysis of wild soybean (Glycine soja) under salt stress and identification of salt-responsive genes.\",\"authors\":\"Man Bo Lee, Taekyeom Kim, Dae Yeon Kim, Su Kyoung Lee, Jae Yoon Kim\",\"doi\":\"10.1007/s13258-024-01599-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.</p><p><strong>Objective: </strong>We conducted a transcriptome analysis of G. soja subjected to salt stress to profile the transcriptomes and identify salt-responsive genes.</p><p><strong>Methods: </strong>G. soja was subjected to salt stress at 0, 24, and 48 h. RNA was sequenced using the Illumina NovaSeq 6000 platform. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) and to analyze alterations in salt-responsive genes.</p><p><strong>Results: </strong>A total of 249 and 1890 DEGs were identified at 24 and 48 h under salt stress, respectively. Among the DEGs, 45 and 252 transcription factors, including bHLH, MYB, and WRKY, were identified at 24 and 48 h, respectively. Additionally, 602 and 1850 DASGs were identified at 24 and 48 h, respectively. For DASGs, significant GO term enrichments included 'mRNA processing', 'Chromatin organization', 'Nucleus', and 'Transcription cofactor activity' at 48 h. The KEGG pathways, 'Spliceosome' and the 'mRNA surveillance pathway', were significantly enriched in DASGs at 48 h. Salt-responsive genes were identified in DEGs and/or DASGs, specifically GsJ3, GsACA12, GsACA13, GsHSFA2-like, and GsHSF30-like.</p><p><strong>Conclusion: </strong>Through the analysis of DEGs, DASGs, and transcription factor predictions, we identified key factors involved in the salt stress response and tolerance of G. soja, which could contribute to salt-tolerant soybean cultivar through genetic engineering strategies.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"351-365\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01599-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01599-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:土壤盐碱化对包括大豆在内的全球农业生产构成严重威胁。甘氨酸大豆是栽培大豆的野生祖先,具有较高的遗传多样性和极具吸引力的稀有等位基因。目的:对盐胁迫下大豆的转录组进行分析,确定盐胁迫下大豆的转录组和盐应答基因。方法:大豆分别在0、24和48 h经受盐胁迫,利用Illumina NovaSeq 6000平台对RNA进行测序。转录组测序用于鉴定差异表达基因(DEGs)和差异选择性剪接基因(DASGs),并分析盐反应基因的变化。结果:盐胁迫24 h和48 h分别鉴定出249个和1890个deg。在deg中,分别在24和48 h鉴定出bHLH、MYB和WRKY等45和252个转录因子。此外,在24和48 h分别鉴定出602和1850个dasg。对于DASGs, 48小时显著的GO项富集包括“mRNA加工”、“染色质组织”、“细胞核”和“转录辅助因子活性”。48小时时,KEGG通路、“剪接体”和“mRNA监视通路”在DASGs中显著富集。在DEGs和/或DASGs中鉴定出盐响应基因,特别是GsJ3、GsACA12、GsACA13、gshsfa2样和gshsf30样。结论:通过对大豆基因DEGs、DASGs和转录因子预测的分析,确定了影响大豆耐盐性和盐胁迫响应的关键因子,为大豆耐盐性基因工程育种提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptome analysis of wild soybean (Glycine soja) under salt stress and identification of salt-responsive genes.

Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.

Objective: We conducted a transcriptome analysis of G. soja subjected to salt stress to profile the transcriptomes and identify salt-responsive genes.

Methods: G. soja was subjected to salt stress at 0, 24, and 48 h. RNA was sequenced using the Illumina NovaSeq 6000 platform. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) and to analyze alterations in salt-responsive genes.

Results: A total of 249 and 1890 DEGs were identified at 24 and 48 h under salt stress, respectively. Among the DEGs, 45 and 252 transcription factors, including bHLH, MYB, and WRKY, were identified at 24 and 48 h, respectively. Additionally, 602 and 1850 DASGs were identified at 24 and 48 h, respectively. For DASGs, significant GO term enrichments included 'mRNA processing', 'Chromatin organization', 'Nucleus', and 'Transcription cofactor activity' at 48 h. The KEGG pathways, 'Spliceosome' and the 'mRNA surveillance pathway', were significantly enriched in DASGs at 48 h. Salt-responsive genes were identified in DEGs and/or DASGs, specifically GsJ3, GsACA12, GsACA13, GsHSFA2-like, and GsHSF30-like.

Conclusion: Through the analysis of DEGs, DASGs, and transcription factor predictions, we identified key factors involved in the salt stress response and tolerance of G. soja, which could contribute to salt-tolerant soybean cultivar through genetic engineering strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信