甜瓜(Cucumis melo) TCP家族基因全基因组分析及其组成表达模式分析。

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genomics Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI:10.1007/s13258-025-01617-y
Md Jahid Hasan Jone, Md Nure Adil Siddique, Manosh Kumar Biswas, Mohammad Rashed Hossain
{"title":"甜瓜(Cucumis melo) TCP家族基因全基因组分析及其组成表达模式分析。","authors":"Md Jahid Hasan Jone, Md Nure Adil Siddique, Manosh Kumar Biswas, Mohammad Rashed Hossain","doi":"10.1007/s13258-025-01617-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.</p><p><strong>Objective: </strong>The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.</p><p><strong>Methods: </strong>The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools.</p><p><strong>Results: </strong>A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification.</p><p><strong>Conclusion: </strong>This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"367-382"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).\",\"authors\":\"Md Jahid Hasan Jone, Md Nure Adil Siddique, Manosh Kumar Biswas, Mohammad Rashed Hossain\",\"doi\":\"10.1007/s13258-025-01617-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.</p><p><strong>Objective: </strong>The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.</p><p><strong>Methods: </strong>The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools.</p><p><strong>Results: </strong>A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification.</p><p><strong>Conclusion: </strong>This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"367-382\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-025-01617-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01617-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:TCP蛋白是植物特有的转录因子,在多种发育过程中发挥重要作用,包括叶片形态发生和衰老、开花、侧分枝、激素串扰和胁迫响应。然而,对甜瓜中TCP全基因组基因及其表达模式的全面分析尚未完成。目的:本研究旨在鉴定和分析甜瓜基因组中的TCP基因,并了解其可能的功能。方法:利用各种数据库和webtools分析染色体定位、基因结构、保守基序、蛋白结构域、结构同源性、顺式调控元件、转录物表达模式和潜在的蛋白-蛋白相互作用。结果:在甜瓜中共鉴定出29个推测的TCP基因。这些基因分为两类:一类(13个基因)和二类(16个基因)。结果表明,推测的CmTCP基因分布在甜瓜12条染色体中的9条,在不同组织中表现出不同的表达模式,这主要表明它们在花器官发育、侧分枝、生长发育等方面具有潜在的作用。系统发育分析表明,一些CmTCP基因可能与其在其他植物物种中的同源基因具有相似的功能,而其他基因可能经历了功能多样化。结论:本研究为进一步研究CmTCP基因在甜瓜中的具体作用以及阐明TCP蛋白调控叶片伸长、花发育和侧分枝的机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

Methods: The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools.

Results: A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification.

Conclusion: This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信