MoonShot:朝着可控视频生成和编辑与运动感知多模态条件

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, Doyen Sahoo
{"title":"MoonShot:朝着可控视频生成和编辑与运动感知多模态条件","authors":"David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, Doyen Sahoo","doi":"10.1007/s11263-025-02346-1","DOIUrl":null,"url":null,"abstract":"<p>Current video diffusion models (VDMs) mostly rely on text conditions, limiting control over video appearance and geometry. This study introduces a new model, MoonShot, conditioning on both image and text for enhanced control. It features the Multimodal Video Block (MVB), integrating the motion-aware dual cross-attention layer for precise appearance and motion alignment with provided prompts, and the spatiotemporal attention layer for large motion dynamics. It can also incorporate pre-trained Image ControlNet modules for geometry conditioning without extra video training. Experiments show our model significantly improves visual quality and motion fidelity, and its versatility allows for applications in personalized video generation, animation, and editing, making it a foundational tool for controllable video creation. More video results can be found here.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"38 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoonShot: Towards Controllable Video Generation and Editing with Motion-Aware Multimodal Conditions\",\"authors\":\"David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, Doyen Sahoo\",\"doi\":\"10.1007/s11263-025-02346-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current video diffusion models (VDMs) mostly rely on text conditions, limiting control over video appearance and geometry. This study introduces a new model, MoonShot, conditioning on both image and text for enhanced control. It features the Multimodal Video Block (MVB), integrating the motion-aware dual cross-attention layer for precise appearance and motion alignment with provided prompts, and the spatiotemporal attention layer for large motion dynamics. It can also incorporate pre-trained Image ControlNet modules for geometry conditioning without extra video training. Experiments show our model significantly improves visual quality and motion fidelity, and its versatility allows for applications in personalized video generation, animation, and editing, making it a foundational tool for controllable video creation. More video results can be found here.\\n</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02346-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02346-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

当前的视频扩散模型(vdm)主要依赖于文本条件,限制了对视频外观和几何形状的控制。本文介绍了一种新的模型MoonShot,它同时对图像和文本进行调节以增强控制。它的特点是多模态视频块(MVB),集成了运动感知双交叉注意层,用于精确的外观和提供提示的运动对齐,以及用于大运动动态的时空注意层。它还可以结合预先训练的图像控制网模块,无需额外的视频训练即可进行几何调节。实验表明,我们的模型显著提高了视觉质量和运动保真度,其多功能性允许在个性化视频生成、动画和编辑中应用,使其成为可控视频创作的基础工具。更多的视频结果可以在这里找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MoonShot: Towards Controllable Video Generation and Editing with Motion-Aware Multimodal Conditions

Current video diffusion models (VDMs) mostly rely on text conditions, limiting control over video appearance and geometry. This study introduces a new model, MoonShot, conditioning on both image and text for enhanced control. It features the Multimodal Video Block (MVB), integrating the motion-aware dual cross-attention layer for precise appearance and motion alignment with provided prompts, and the spatiotemporal attention layer for large motion dynamics. It can also incorporate pre-trained Image ControlNet modules for geometry conditioning without extra video training. Experiments show our model significantly improves visual quality and motion fidelity, and its versatility allows for applications in personalized video generation, animation, and editing, making it a foundational tool for controllable video creation. More video results can be found here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信