体外支持的多模式预测-资源密集型治疗,利用大型国家数据库。

IF 3.4 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-01-06 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae158
Daoyi Zhu, Bing Xue, Neel Shah, Philip Richard Orrin Payne, Chenyang Lu, Ahmed Sameh Said
{"title":"体外支持的多模式预测-资源密集型治疗,利用大型国家数据库。","authors":"Daoyi Zhu, Bing Xue, Neel Shah, Philip Richard Orrin Payne, Chenyang Lu, Ahmed Sameh Said","doi":"10.1093/jamiaopen/ooae158","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.</p><p><strong>Material and methods: </strong>We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled \"PreEMPT-ECMO\" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.</p><p><strong>Results: </strong>Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.</p><p><strong>Discussion and conclusions: </strong>We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae158"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.\",\"authors\":\"Daoyi Zhu, Bing Xue, Neel Shah, Philip Richard Orrin Payne, Chenyang Lu, Ahmed Sameh Said\",\"doi\":\"10.1093/jamiaopen/ooae158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.</p><p><strong>Material and methods: </strong>We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled \\\"PreEMPT-ECMO\\\" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.</p><p><strong>Results: </strong>Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.</p><p><strong>Discussion and conclusions: </strong>We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"8 1\",\"pages\":\"ooae158\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooae158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:体外膜氧合(ECMO)是重症监护中资源最密集的治疗方法之一。2019冠状病毒病大流行凸显了ECMO资源分配工具的缺乏。我们的目标是建立一个持续的ECMO风险预测模型,以加强患者分诊和资源分配。材料和方法:我们利用来自国家COVID队列协作(N3C)的多模式数据开发了一个分层深度学习模型,称为“PreEMPT-ECMO”(ECMO的预测、早期监测和主动分类),该模型集成了静态和多粒度时间序列特征,以生成ECMO利用率的连续预测。模型的性能在ECMO开始前0至96小时的时间点上进行评估,使用准确性和精度指标。结果:2020年1月至2023年5月,纳入101 400例患者,其中1298例(1.28%)支持ECMO。PreEMPT-ECMO在所有时间点的准确性和精密度方面都优于现有的预测模型,包括逻辑回归、支持向量机、随机森林和极端梯度增强树。模型解释分析还强调了每个患者临床过程中特征贡献的变化。讨论和结论:我们开发了一个用于连续ECMO使用预测的分层模型,利用包含各种粒度的静态和时间序列变量的大型多中心数据集。这种新颖的方法反映了ECMO启动中固有的微妙决策过程,并有可能用作指导患者分诊和ECMO资源分配的早期预警工具。未来的方向包括对非covid -19难治性呼吸衰竭的前瞻性验证和推广,旨在改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.

Material and methods: We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled "PreEMPT-ECMO" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.

Results: Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.

Discussion and conclusions: We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信