负重时髌骨轴向不正与髌骨高度的关系降低,而髌骨轴向不正与胫骨结节-滑车沟的关系增加。

IF 4.2 2区 医学 Q1 ORTHOPEDICS
Yurou Chen, Wei Tian, Jia Li, Bo Sheng, Furong Lv, Shixin Nie, Fajin Lv
{"title":"负重时髌骨轴向不正与髌骨高度的关系降低,而髌骨轴向不正与胫骨结节-滑车沟的关系增加。","authors":"Yurou Chen, Wei Tian, Jia Li, Bo Sheng, Furong Lv, Shixin Nie, Fajin Lv","doi":"10.1097/CORR.0000000000003357","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nonweightbearing preoperative assessments avoid quadriceps contraction that tends to affect patellar motion and appear to be inaccurate in quantifying anatomic factors, which can lead to incorrect corrections and postoperative complications.</p><p><strong>Questions/purposes: </strong>(1) Does the relationship of patellar axial malalignment and other anatomic factors change during weightbearing? (2) What anatomic factor was most strongly correlated with recurrent patellar dislocation during weightbearing?</p><p><strong>Methods: </strong>This prospective, comparative, observational study recruited participants at our institution between January 2023 and September 2023. During this time, all patients with recurrent patellar dislocations received both weightbearing and nonweightbearing CT scans; control patients who received unilateral CT scans because of injuries or benign tumors received both weightbearing and nonweightbearing CT scans. Between January 2023 and September 2023, 52 patients were treated at our institution for patellar dislocation. We included those who had experienced at least two dislocations. The exclusion criteria were as follows: (1) traumatic dislocation, (2) prior knee surgery, (3) osteoarthritis (≥ Kellgren-Lawrence Grade 3), and (4) abnormal walking and standing postures confirmed by the orthopaedic surgeon and an inability to complete weightbearing CT with their body in a neutral position (meaning their body weight was evenly placed on both knees) because of severe pain. After applying prespecified exclusions, 63% (33 patients) of the original number were included, and data for 33 patients (65 knees) with weightbearing CT data and 28 patients (52 knees) with nonweightbearing CT data were obtained. Because of ethical requirements, the control group included patients who underwent unilateral CT scanning (for an injury or a benign tumor), and weightbearing CT and nonweightbearing CT covered both knees. Control knees were confirmed to have normal patellofemoral function by physical examination by an orthopaedic surgeon involved with the study. The control group consisted of the normal knees (52 knees underwent both weightbearing CT and nonweightbearing CT) and the affected but uninvolved knees (47 knees underwent weightbearing CT and 6 knees underwent nonweightbearing CT), and a total of 52 patients (99 knees) with weightbearing CT data and 31 patients (58 knees) with nonweightbearing CT data were included. There were no differences between the recurrent patellar dislocation and control groups in terms of gender, side, and BMI. Although the patients in the control group were older than those in the study group, most patients in both groups were at or at least near skeletal maturity. Patellofemoral measurements were evaluated with the Insall-Salvati ratio extension , Blackburne-Peel ratio extension , Caton-Deschamps ratio extension , bisect offset index, lateral patellar tilt angle, tibial tubercle-trochlear groove, lateral trochlear inclination, sulcus depth, and sulcus angle. Intraclass correlation coefficients (ICCs) for all these measurements were greater than or equal to 0.70 and so were considered adequate for reliability. The correlations between patellar axial malalignment and other anatomic factors during weightbearing and nonweightbearing were compared, and anatomic factors between weightbearing and nonweightbearing were compared to investigate the relationship of patellar axial malalignment and anatomic factors during weightbearing. The correlation between anatomic factors and recurrent patellar dislocation and the diagnostic performance of each factor for recurrent patellar dislocation were reported to find the anatomic factor that most strongly correlated with recurrent patellar dislocation during weightbearing.</p><p><strong>Results: </strong>We observed several changes in axial malalignment measurements that occurred with weightbearing. The correlation between bisect offset index and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.12 [95% confidence interval (CI) -0.12 to 0.35] with weightbearing versus r = 0.58 [95% CI 0.36 to 0.75]; p = 0.003). The correlation between bisect offset index and Caton-Deschamps ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.25 [95% CI 0.03 to 0.47] versus r = 0.68 [95% CI 0.49 to 0.82]; p = 0.002). The correlation between bisect offset index and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.63 [95% CI 0.43 to 0.78] versus r = 0.38 [95% CI 0.05 to 0.62]; p = 0.04). The correlation between lateral patellar tilt angle and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.05 [95% CI -0.17 to 0.28] versus r = 0.44 [95% CI 0.21 to 0.63]; p = 0.02). The correlation between the lateral patellar tilt angle and Caton-Deschamps ratio extension decreased with the weightbearing compared with the nonweightbearing state (r = 0.16 [95% CI -0.09 to 0.40] versus r = 0.46 [95% CI 0.19 to 0.66]; p = 0.04). The correlation between lateral patellar tilt angle and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.64 [95% CI 0.48 to 0.76] versus r = 0.41 [95% CI 0.13 to 0.64]; p = 0.048). Several parameters changed with weightbearing. In both recurrent patellar dislocation and control groups, the Insall-Salvati ratio extension and the tibial tubercle-trochlear groove distance were lower with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p = 0.001/p < 0.001 versus p = 0.006/p < 0.001); bisect offset index was higher with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p < 0.001/p < 0.001). In the control group, the Blackburne-Peel ratio extension and the Caton-Deschamps ratio extension were lower with weightbearing compared with nonweightbearing (p = 0.01, p = 0.007). The anatomic factor most strongly correlated with recurrent patellar dislocation during weightbearing was the bisect offset index (r = 0.73 [95% CI 0.65 to 0.79]; p < 0.001). The anatomic factor most strongly correlated with recurrent patellar dislocation during nonweightbearing was the sulcus depth (r = -0.70 [95% CI -0.78 to -0.59]; p < 0.001). The ROC analysis showed that during weightbearing, the bisect offset index had the best diagnostic ability for recurrent patellar dislocation (area under the curve [AUC] 0.93 [95% CI 0.89 to 0.97]), whereas when the patient was nonweightbearing, sulcus depth was the best predictor (AUC 0.91 [95% CI 0.85 to 0.96]).</p><p><strong>Conclusion: </strong>Evaluations based on nonweightbearing examinations underestimated the interaction between the tibial tubercle-trochlear groove and patellar axial alignment, thus surgeons could consider weightbearing preoperative assessments for tibial tuberosity osteotomy to avoid failing to restore normal patellar axial alignment. Bisect offset index was an important indicator to improve detecting possible recurrent patellar dislocation in the state of functional activation of soft tissues and can estimate patellar tilt to simplify the preoperative evaluation procedure. For patients who are at high risk but who have not yet developed a patellar dislocation, assessing the risk of recurrent patellar dislocation with the bisect offset index during weightbearing can inform them about the intensity and manner of their daily exercise.</p><p><strong>Level of evidence: </strong>Level III, prognostic study.</p>","PeriodicalId":10404,"journal":{"name":"Clinical Orthopaedics and Related Research®","volume":" ","pages":"1096-1109"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106200/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decreased Association Between Patellar Axial Malalignment and Patellar Height and Increased Association Between Patellar Axial Malalignment and Tibial Tubercle-Trochlear Groove During Weightbearing.\",\"authors\":\"Yurou Chen, Wei Tian, Jia Li, Bo Sheng, Furong Lv, Shixin Nie, Fajin Lv\",\"doi\":\"10.1097/CORR.0000000000003357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nonweightbearing preoperative assessments avoid quadriceps contraction that tends to affect patellar motion and appear to be inaccurate in quantifying anatomic factors, which can lead to incorrect corrections and postoperative complications.</p><p><strong>Questions/purposes: </strong>(1) Does the relationship of patellar axial malalignment and other anatomic factors change during weightbearing? (2) What anatomic factor was most strongly correlated with recurrent patellar dislocation during weightbearing?</p><p><strong>Methods: </strong>This prospective, comparative, observational study recruited participants at our institution between January 2023 and September 2023. During this time, all patients with recurrent patellar dislocations received both weightbearing and nonweightbearing CT scans; control patients who received unilateral CT scans because of injuries or benign tumors received both weightbearing and nonweightbearing CT scans. Between January 2023 and September 2023, 52 patients were treated at our institution for patellar dislocation. We included those who had experienced at least two dislocations. The exclusion criteria were as follows: (1) traumatic dislocation, (2) prior knee surgery, (3) osteoarthritis (≥ Kellgren-Lawrence Grade 3), and (4) abnormal walking and standing postures confirmed by the orthopaedic surgeon and an inability to complete weightbearing CT with their body in a neutral position (meaning their body weight was evenly placed on both knees) because of severe pain. After applying prespecified exclusions, 63% (33 patients) of the original number were included, and data for 33 patients (65 knees) with weightbearing CT data and 28 patients (52 knees) with nonweightbearing CT data were obtained. Because of ethical requirements, the control group included patients who underwent unilateral CT scanning (for an injury or a benign tumor), and weightbearing CT and nonweightbearing CT covered both knees. Control knees were confirmed to have normal patellofemoral function by physical examination by an orthopaedic surgeon involved with the study. The control group consisted of the normal knees (52 knees underwent both weightbearing CT and nonweightbearing CT) and the affected but uninvolved knees (47 knees underwent weightbearing CT and 6 knees underwent nonweightbearing CT), and a total of 52 patients (99 knees) with weightbearing CT data and 31 patients (58 knees) with nonweightbearing CT data were included. There were no differences between the recurrent patellar dislocation and control groups in terms of gender, side, and BMI. Although the patients in the control group were older than those in the study group, most patients in both groups were at or at least near skeletal maturity. Patellofemoral measurements were evaluated with the Insall-Salvati ratio extension , Blackburne-Peel ratio extension , Caton-Deschamps ratio extension , bisect offset index, lateral patellar tilt angle, tibial tubercle-trochlear groove, lateral trochlear inclination, sulcus depth, and sulcus angle. Intraclass correlation coefficients (ICCs) for all these measurements were greater than or equal to 0.70 and so were considered adequate for reliability. The correlations between patellar axial malalignment and other anatomic factors during weightbearing and nonweightbearing were compared, and anatomic factors between weightbearing and nonweightbearing were compared to investigate the relationship of patellar axial malalignment and anatomic factors during weightbearing. The correlation between anatomic factors and recurrent patellar dislocation and the diagnostic performance of each factor for recurrent patellar dislocation were reported to find the anatomic factor that most strongly correlated with recurrent patellar dislocation during weightbearing.</p><p><strong>Results: </strong>We observed several changes in axial malalignment measurements that occurred with weightbearing. The correlation between bisect offset index and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.12 [95% confidence interval (CI) -0.12 to 0.35] with weightbearing versus r = 0.58 [95% CI 0.36 to 0.75]; p = 0.003). The correlation between bisect offset index and Caton-Deschamps ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.25 [95% CI 0.03 to 0.47] versus r = 0.68 [95% CI 0.49 to 0.82]; p = 0.002). The correlation between bisect offset index and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.63 [95% CI 0.43 to 0.78] versus r = 0.38 [95% CI 0.05 to 0.62]; p = 0.04). The correlation between lateral patellar tilt angle and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.05 [95% CI -0.17 to 0.28] versus r = 0.44 [95% CI 0.21 to 0.63]; p = 0.02). The correlation between the lateral patellar tilt angle and Caton-Deschamps ratio extension decreased with the weightbearing compared with the nonweightbearing state (r = 0.16 [95% CI -0.09 to 0.40] versus r = 0.46 [95% CI 0.19 to 0.66]; p = 0.04). The correlation between lateral patellar tilt angle and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.64 [95% CI 0.48 to 0.76] versus r = 0.41 [95% CI 0.13 to 0.64]; p = 0.048). Several parameters changed with weightbearing. In both recurrent patellar dislocation and control groups, the Insall-Salvati ratio extension and the tibial tubercle-trochlear groove distance were lower with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p = 0.001/p < 0.001 versus p = 0.006/p < 0.001); bisect offset index was higher with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p < 0.001/p < 0.001). In the control group, the Blackburne-Peel ratio extension and the Caton-Deschamps ratio extension were lower with weightbearing compared with nonweightbearing (p = 0.01, p = 0.007). The anatomic factor most strongly correlated with recurrent patellar dislocation during weightbearing was the bisect offset index (r = 0.73 [95% CI 0.65 to 0.79]; p < 0.001). The anatomic factor most strongly correlated with recurrent patellar dislocation during nonweightbearing was the sulcus depth (r = -0.70 [95% CI -0.78 to -0.59]; p < 0.001). The ROC analysis showed that during weightbearing, the bisect offset index had the best diagnostic ability for recurrent patellar dislocation (area under the curve [AUC] 0.93 [95% CI 0.89 to 0.97]), whereas when the patient was nonweightbearing, sulcus depth was the best predictor (AUC 0.91 [95% CI 0.85 to 0.96]).</p><p><strong>Conclusion: </strong>Evaluations based on nonweightbearing examinations underestimated the interaction between the tibial tubercle-trochlear groove and patellar axial alignment, thus surgeons could consider weightbearing preoperative assessments for tibial tuberosity osteotomy to avoid failing to restore normal patellar axial alignment. Bisect offset index was an important indicator to improve detecting possible recurrent patellar dislocation in the state of functional activation of soft tissues and can estimate patellar tilt to simplify the preoperative evaluation procedure. For patients who are at high risk but who have not yet developed a patellar dislocation, assessing the risk of recurrent patellar dislocation with the bisect offset index during weightbearing can inform them about the intensity and manner of their daily exercise.</p><p><strong>Level of evidence: </strong>Level III, prognostic study.</p>\",\"PeriodicalId\":10404,\"journal\":{\"name\":\"Clinical Orthopaedics and Related Research®\",\"volume\":\" \",\"pages\":\"1096-1109\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Orthopaedics and Related Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CORR.0000000000003357\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Orthopaedics and Related Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CORR.0000000000003357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:术前非负重评估避免了股四头肌收缩,因为后者往往会影响髌骨运动,而且在量化解剖因素方面似乎不准确,这可能导致不正确的矫正和术后并发症。问题/目的:(1)负重时髌骨轴向错位与其他解剖因素的关系是否发生改变?(2)负重时复发性髌骨脱位与什么解剖因素关系最密切?方法:这项前瞻性、对比性、观察性研究于2023年1月至2023年9月在我们的机构招募了参与者。在此期间,所有复发性髌骨脱位患者均接受负重和非负重CT扫描;对照组因损伤或良性肿瘤接受单侧CT扫描的患者同时接受负重和非负重CT扫描。在2023年1月至2023年9月期间,52例患者在我院接受了髌骨脱位治疗。我们包括那些至少经历过两次脱位的人。排除标准如下:(1)外伤性脱位;(2)既往膝关节手术;(3)骨关节炎(≥Kellgren-Lawrence分级3级);(4)骨科医生证实行走和站立姿势异常,由于剧烈疼痛无法在身体处于中立位(即体重均匀分布在双膝上)的情况下完成负重CT。在应用预先指定的排除后,纳入了原始人数的63%(33例),获得了33例(65个膝关节)负重CT数据和28例(52个膝关节)非负重CT数据。由于伦理要求,对照组包括接受单侧CT扫描(损伤或良性肿瘤)的患者,负重CT和非负重CT覆盖双膝。参与研究的骨科医生通过体格检查确认对照膝关节髌骨功能正常。对照组包括正常膝关节(52个膝关节同时行负重CT和非负重CT)和受影响但未受累的膝关节(47个膝关节行负重CT, 6个膝关节行非负重CT),共有52例患者(99个膝关节)有负重CT资料,31例患者(58个膝关节)有非负重CT资料。复发性髌骨脱位组与对照组在性别、侧面和BMI方面没有差异。虽然对照组的患者比研究组的患者年龄大,但两组中的大多数患者都达到或至少接近骨骼成熟。髌股测量采用Insall-Salvati比值扩展、blackburn - peel比值扩展、Caton-Deschamps比值扩展、等分偏移指数、髌骨外侧倾斜角度、胫骨结节-滑车沟、滑车外侧倾斜、沟深和沟角进行评估。所有这些测量的类内相关系数(ICCs)大于或等于0.70,因此被认为具有足够的可靠性。比较负重与非负重时髌骨轴向错位与其他解剖因素的相关性,比较负重与非负重时的解剖因素,探讨负重时髌骨轴向错位与解剖因素的关系。通过分析各解剖因素与复发性髌骨脱位的相关性及各因素对复发性髌骨脱位的诊断效果,找到与负重时复发性髌骨脱位相关性最强的解剖因素。结果:我们观察到一些变化轴向失调测量发生与负重。与非负重状态相比,负重状态下的对角偏移指数与blackburn - peel比值延伸的相关性降低(r = 0.12[95%可信区间(CI) -0.12至0.35],而负重状态下的r = 0.58[95%可信区间(CI) 0.36至0.75];P = 0.003)。与非负重状态相比,负重状态下,等分偏移指数与卡顿-德尚比值延伸的相关性降低(r = 0.25 [95% CI 0.03 ~ 0.47]对r = 0.68 [95% CI 0.49 ~ 0.82];P = 0.002)。与非负重状态相比,负重状态下胫骨结节-滑车沟距离与等分偏移指数的相关性增加(r = 0.63 [95% CI 0.43 ~ 0.78]对r = 0.38 [95% CI 0.05 ~ 0.62];P = 0.04)。与非负重状态相比,负重状态下髌骨外侧倾斜角度与blackburn - peel比值的相关性降低(r = 0.05 [95% CI -0.17 ~ 0.28]对r = 0.44 [95% CI 0.21 ~ 0.63];P = 0.02)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decreased Association Between Patellar Axial Malalignment and Patellar Height and Increased Association Between Patellar Axial Malalignment and Tibial Tubercle-Trochlear Groove During Weightbearing.

Background: Nonweightbearing preoperative assessments avoid quadriceps contraction that tends to affect patellar motion and appear to be inaccurate in quantifying anatomic factors, which can lead to incorrect corrections and postoperative complications.

Questions/purposes: (1) Does the relationship of patellar axial malalignment and other anatomic factors change during weightbearing? (2) What anatomic factor was most strongly correlated with recurrent patellar dislocation during weightbearing?

Methods: This prospective, comparative, observational study recruited participants at our institution between January 2023 and September 2023. During this time, all patients with recurrent patellar dislocations received both weightbearing and nonweightbearing CT scans; control patients who received unilateral CT scans because of injuries or benign tumors received both weightbearing and nonweightbearing CT scans. Between January 2023 and September 2023, 52 patients were treated at our institution for patellar dislocation. We included those who had experienced at least two dislocations. The exclusion criteria were as follows: (1) traumatic dislocation, (2) prior knee surgery, (3) osteoarthritis (≥ Kellgren-Lawrence Grade 3), and (4) abnormal walking and standing postures confirmed by the orthopaedic surgeon and an inability to complete weightbearing CT with their body in a neutral position (meaning their body weight was evenly placed on both knees) because of severe pain. After applying prespecified exclusions, 63% (33 patients) of the original number were included, and data for 33 patients (65 knees) with weightbearing CT data and 28 patients (52 knees) with nonweightbearing CT data were obtained. Because of ethical requirements, the control group included patients who underwent unilateral CT scanning (for an injury or a benign tumor), and weightbearing CT and nonweightbearing CT covered both knees. Control knees were confirmed to have normal patellofemoral function by physical examination by an orthopaedic surgeon involved with the study. The control group consisted of the normal knees (52 knees underwent both weightbearing CT and nonweightbearing CT) and the affected but uninvolved knees (47 knees underwent weightbearing CT and 6 knees underwent nonweightbearing CT), and a total of 52 patients (99 knees) with weightbearing CT data and 31 patients (58 knees) with nonweightbearing CT data were included. There were no differences between the recurrent patellar dislocation and control groups in terms of gender, side, and BMI. Although the patients in the control group were older than those in the study group, most patients in both groups were at or at least near skeletal maturity. Patellofemoral measurements were evaluated with the Insall-Salvati ratio extension , Blackburne-Peel ratio extension , Caton-Deschamps ratio extension , bisect offset index, lateral patellar tilt angle, tibial tubercle-trochlear groove, lateral trochlear inclination, sulcus depth, and sulcus angle. Intraclass correlation coefficients (ICCs) for all these measurements were greater than or equal to 0.70 and so were considered adequate for reliability. The correlations between patellar axial malalignment and other anatomic factors during weightbearing and nonweightbearing were compared, and anatomic factors between weightbearing and nonweightbearing were compared to investigate the relationship of patellar axial malalignment and anatomic factors during weightbearing. The correlation between anatomic factors and recurrent patellar dislocation and the diagnostic performance of each factor for recurrent patellar dislocation were reported to find the anatomic factor that most strongly correlated with recurrent patellar dislocation during weightbearing.

Results: We observed several changes in axial malalignment measurements that occurred with weightbearing. The correlation between bisect offset index and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.12 [95% confidence interval (CI) -0.12 to 0.35] with weightbearing versus r = 0.58 [95% CI 0.36 to 0.75]; p = 0.003). The correlation between bisect offset index and Caton-Deschamps ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.25 [95% CI 0.03 to 0.47] versus r = 0.68 [95% CI 0.49 to 0.82]; p = 0.002). The correlation between bisect offset index and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.63 [95% CI 0.43 to 0.78] versus r = 0.38 [95% CI 0.05 to 0.62]; p = 0.04). The correlation between lateral patellar tilt angle and Blackburne-Peel ratio extension decreased with weightbearing compared with the nonweightbearing state (r = 0.05 [95% CI -0.17 to 0.28] versus r = 0.44 [95% CI 0.21 to 0.63]; p = 0.02). The correlation between the lateral patellar tilt angle and Caton-Deschamps ratio extension decreased with the weightbearing compared with the nonweightbearing state (r = 0.16 [95% CI -0.09 to 0.40] versus r = 0.46 [95% CI 0.19 to 0.66]; p = 0.04). The correlation between lateral patellar tilt angle and tibial tubercle-trochlear groove distance increased with weightbearing compared with the nonweightbearing state (r = 0.64 [95% CI 0.48 to 0.76] versus r = 0.41 [95% CI 0.13 to 0.64]; p = 0.048). Several parameters changed with weightbearing. In both recurrent patellar dislocation and control groups, the Insall-Salvati ratio extension and the tibial tubercle-trochlear groove distance were lower with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p = 0.001/p < 0.001 versus p = 0.006/p < 0.001); bisect offset index was higher with weightbearing compared with nonweightbearing (recurrent patellar dislocation/control: p < 0.001/p < 0.001). In the control group, the Blackburne-Peel ratio extension and the Caton-Deschamps ratio extension were lower with weightbearing compared with nonweightbearing (p = 0.01, p = 0.007). The anatomic factor most strongly correlated with recurrent patellar dislocation during weightbearing was the bisect offset index (r = 0.73 [95% CI 0.65 to 0.79]; p < 0.001). The anatomic factor most strongly correlated with recurrent patellar dislocation during nonweightbearing was the sulcus depth (r = -0.70 [95% CI -0.78 to -0.59]; p < 0.001). The ROC analysis showed that during weightbearing, the bisect offset index had the best diagnostic ability for recurrent patellar dislocation (area under the curve [AUC] 0.93 [95% CI 0.89 to 0.97]), whereas when the patient was nonweightbearing, sulcus depth was the best predictor (AUC 0.91 [95% CI 0.85 to 0.96]).

Conclusion: Evaluations based on nonweightbearing examinations underestimated the interaction between the tibial tubercle-trochlear groove and patellar axial alignment, thus surgeons could consider weightbearing preoperative assessments for tibial tuberosity osteotomy to avoid failing to restore normal patellar axial alignment. Bisect offset index was an important indicator to improve detecting possible recurrent patellar dislocation in the state of functional activation of soft tissues and can estimate patellar tilt to simplify the preoperative evaluation procedure. For patients who are at high risk but who have not yet developed a patellar dislocation, assessing the risk of recurrent patellar dislocation with the bisect offset index during weightbearing can inform them about the intensity and manner of their daily exercise.

Level of evidence: Level III, prognostic study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
11.90%
发文量
722
审稿时长
2.5 months
期刊介绍: Clinical Orthopaedics and Related Research® is a leading peer-reviewed journal devoted to the dissemination of new and important orthopaedic knowledge. CORR® brings readers the latest clinical and basic research, along with columns, commentaries, and interviews with authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信