通过小规模培养和自动显微镜观察丝状真菌形态与生产力的关系。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Katja Rohr, Bertram Geinitz, Johannes Seiffarth, Aydin Anbarani, Sören Bernauer, Matthias Moch, Julia Tenhaef, Wolfgang Wiechert, Katharina Nöh, Marco Oldiges
{"title":"通过小规模培养和自动显微镜观察丝状真菌形态与生产力的关系。","authors":"Katja Rohr, Bertram Geinitz, Johannes Seiffarth, Aydin Anbarani, Sören Bernauer, Matthias Moch, Julia Tenhaef, Wolfgang Wiechert, Katharina Nöh, Marco Oldiges","doi":"10.1002/btpr.3528","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous fungi are a cornerstone in the biotechnological production of enzymes, proteins, and organic acids. However, challenges in understanding and controlling the relationship between morphology and productivity can limit their application. This study addresses these challenges using Thermothelomyces thermophilus, a promising thermophilic fungus known for the production of thermostable enzymes. We investigated the effects of environmental conditions on fungal morphology and enzyme production using a combination of microbioreactor cultivation, automated liquid handling, and automated microscopy. Specifically, batch and fed batch cultivations were performed at different pH levels and glucose feeding rates to study their effects on secretory phytase production, fungal growth, and morphology. Results from batch cultivations revealed a two-fold higher phytase activity at pH 5.5 compared to pH 6.5, with notably smaller fungal fragments at the end of cultivation. Conversely, fed batch cultivations at a feeding rate of 1 g (l h)<sup>-1</sup> glucose showed a 1.6-fold higher enzyme activity at pH 5.5, accompanied by much larger fungal aggregates throughout the feeding phase. These findings suggest that large aggregates are associated with high productivity; however, their breakdown further enhances enzyme release, increasing activity in the supernatant. This study not only provides insights on the morphology-productivity relationship of T. thermophilus, but also demonstrates the efficacy of integrating microbioreactors with automated microscopy. This methodology represents a significant advance in the field of fungal biotechnology, paving the way for more efficient industrial bioprocesses.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3528"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the morphology-productivity relationship of filamentous fungi through small-scale cultivation and automated microscopy of Thermothelomyces thermophilus.\",\"authors\":\"Katja Rohr, Bertram Geinitz, Johannes Seiffarth, Aydin Anbarani, Sören Bernauer, Matthias Moch, Julia Tenhaef, Wolfgang Wiechert, Katharina Nöh, Marco Oldiges\",\"doi\":\"10.1002/btpr.3528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Filamentous fungi are a cornerstone in the biotechnological production of enzymes, proteins, and organic acids. However, challenges in understanding and controlling the relationship between morphology and productivity can limit their application. This study addresses these challenges using Thermothelomyces thermophilus, a promising thermophilic fungus known for the production of thermostable enzymes. We investigated the effects of environmental conditions on fungal morphology and enzyme production using a combination of microbioreactor cultivation, automated liquid handling, and automated microscopy. Specifically, batch and fed batch cultivations were performed at different pH levels and glucose feeding rates to study their effects on secretory phytase production, fungal growth, and morphology. Results from batch cultivations revealed a two-fold higher phytase activity at pH 5.5 compared to pH 6.5, with notably smaller fungal fragments at the end of cultivation. Conversely, fed batch cultivations at a feeding rate of 1 g (l h)<sup>-1</sup> glucose showed a 1.6-fold higher enzyme activity at pH 5.5, accompanied by much larger fungal aggregates throughout the feeding phase. These findings suggest that large aggregates are associated with high productivity; however, their breakdown further enhances enzyme release, increasing activity in the supernatant. This study not only provides insights on the morphology-productivity relationship of T. thermophilus, but also demonstrates the efficacy of integrating microbioreactors with automated microscopy. This methodology represents a significant advance in the field of fungal biotechnology, paving the way for more efficient industrial bioprocesses.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e3528\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3528\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3528","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丝状真菌是酶、蛋白质和有机酸生物技术生产的基石。然而,在理解和控制形态与生产力之间的关系方面的挑战限制了它们的应用。本研究利用嗜热热菌解决了这些挑战,嗜热热菌是一种以生产耐热酶而闻名的有前途的嗜热真菌。我们研究了环境条件对真菌形态和酶生产的影响,采用微生物反应器培养、自动化液体处理和自动化显微镜相结合的方法。具体而言,在不同的pH水平和葡萄糖摄食率下进行分批培养和补料分批培养,研究它们对分泌植酸酶产生、真菌生长和形态的影响。批培养结果显示,pH为5.5时植酸酶活性比pH为6.5时高两倍,培养结束时真菌片段明显更小。相反,在1 g (l h)-1葡萄糖的投喂速率下,在pH为5.5时,酶活性提高了1.6倍,并且在整个投喂阶段都有更大的真菌聚集体。这些发现表明,大的集合体与高生产率有关;然而,它们的分解进一步促进酶的释放,增加上清液的活性。本研究不仅揭示了嗜热t菌的形态与产量的关系,而且证明了将微生物反应器与自动显微镜相结合的有效性。这种方法代表了真菌生物技术领域的重大进步,为更有效的工业生物工艺铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the morphology-productivity relationship of filamentous fungi through small-scale cultivation and automated microscopy of Thermothelomyces thermophilus.

Filamentous fungi are a cornerstone in the biotechnological production of enzymes, proteins, and organic acids. However, challenges in understanding and controlling the relationship between morphology and productivity can limit their application. This study addresses these challenges using Thermothelomyces thermophilus, a promising thermophilic fungus known for the production of thermostable enzymes. We investigated the effects of environmental conditions on fungal morphology and enzyme production using a combination of microbioreactor cultivation, automated liquid handling, and automated microscopy. Specifically, batch and fed batch cultivations were performed at different pH levels and glucose feeding rates to study their effects on secretory phytase production, fungal growth, and morphology. Results from batch cultivations revealed a two-fold higher phytase activity at pH 5.5 compared to pH 6.5, with notably smaller fungal fragments at the end of cultivation. Conversely, fed batch cultivations at a feeding rate of 1 g (l h)-1 glucose showed a 1.6-fold higher enzyme activity at pH 5.5, accompanied by much larger fungal aggregates throughout the feeding phase. These findings suggest that large aggregates are associated with high productivity; however, their breakdown further enhances enzyme release, increasing activity in the supernatant. This study not only provides insights on the morphology-productivity relationship of T. thermophilus, but also demonstrates the efficacy of integrating microbioreactors with automated microscopy. This methodology represents a significant advance in the field of fungal biotechnology, paving the way for more efficient industrial bioprocesses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信