Renhua R Huang, Michael Spliedt, Tom Kaufman, Sergey Gorlatov, Bhaswati Barat, Kalpana Shah, Jeffrey Gill, Kurt Stahl, Jennifer DiChiara, Qian Wang, Jonathan C Li, Ralph Alderson, Paul A Moore, Jennifer G Brown, James Tamura, Xiaoyu Zhang, Ezio Bonvini, Gundo Diedrich
{"title":"一种用于治疗实体肿瘤的双特异性5T4 x CD3 DART®分子的种间交叉反应性、热稳定性和表达的同步工程策略","authors":"Renhua R Huang, Michael Spliedt, Tom Kaufman, Sergey Gorlatov, Bhaswati Barat, Kalpana Shah, Jeffrey Gill, Kurt Stahl, Jennifer DiChiara, Qian Wang, Jonathan C Li, Ralph Alderson, Paul A Moore, Jennifer G Brown, James Tamura, Xiaoyu Zhang, Ezio Bonvini, Gundo Diedrich","doi":"10.3390/antib14010007","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. <b>Method:</b> To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level. <b>Results:</b> This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. <b>Conclusions:</b> This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755548/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART<sup>®</sup> Molecule for Treatment of Solid Tumors.\",\"authors\":\"Renhua R Huang, Michael Spliedt, Tom Kaufman, Sergey Gorlatov, Bhaswati Barat, Kalpana Shah, Jeffrey Gill, Kurt Stahl, Jennifer DiChiara, Qian Wang, Jonathan C Li, Ralph Alderson, Paul A Moore, Jennifer G Brown, James Tamura, Xiaoyu Zhang, Ezio Bonvini, Gundo Diedrich\",\"doi\":\"10.3390/antib14010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. <b>Method:</b> To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level. <b>Results:</b> This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. <b>Conclusions:</b> This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.</p>\",\"PeriodicalId\":8188,\"journal\":{\"name\":\"Antibodies\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antib14010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib14010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:双特异性抗体是一类很有前途的癌症治疗生物制剂。然而,它们的双重特异性和复杂的结构给工程过程带来了挑战,往往导致分子具有良好的功能但物理化学性质差。方法:为了克服抗5T4 x抗cd3 (α5T4 x αCD3) DART分子性质的局限性,建立了一种噬菌体展示方法,成功地在与食蟹5T4同源物交叉反应的同时,改善了热稳定性,提高了表达水平。结果:这种方法产生了多个DART分子,在所有三种性质上都表现出显著的改善。先导DART分子在体内和体外均显示出强大的抗肿瘤活性。尽管其在人类fcrn转基因小鼠中的清除率与亲本分子相当,但在食蟹猴中观察到的清除率更快。先导的α5T4 x αCD3 DART分子未显示出脱靶结合或多特异性的证据,这表明对靶标的亲和力增加可能是其在食蟹猴中加速清除的原因。结论:这可能反映了靶向介导的药物处置(TMDD),尽管5T4在健康组织中的表达有限,但靶向5T4的潜在局限性。
A Strategy for Simultaneous Engineering of Interspecies Cross-Reactivity, Thermostability, and Expression of a Bispecific 5T4 x CD3 DART® Molecule for Treatment of Solid Tumors.
Background: Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. Method: To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level. Results: This approach generated multiple DART molecules that exhibited significant improvements in all three properties. The lead DART molecule demonstrated potent in vitro and in vivo anti-tumor activity. Although its clearance in human FcRn-transgenic mice was comparable to that of the parental molecule, faster clearance was observed in cynomolgus monkeys. The lead α5T4 x αCD3 DART molecule displayed no evidence of off-target binding or polyspecificity, suggesting that the increased affinity for the target may account for its accelerated clearance in cynomolgus monkeys. Conclusions: This may reflect target-mediated drug disposition (TMDD), a potential limitation of targeting 5T4, despite its limited expression in healthy tissues.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.